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Abstract

In this paper we consider approximate eigenvalues and approximate eigenspaces for the

generalized Rayleigh quotient, and present some residual bounds. Our obtained bounds

will improve the existing ones.
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1. Introduction

By Cm×n we denote the set of m × n complex matrices, by A∗ we denote the conjugate

transpose, and by I we denote the identity matrix. The Frobenius norm and the spectral norm

of a matrix · are denoted by ‖ · ‖F and ‖ · ‖2, respectively.
Let A and H be diagonalizable matrices with the following decompositions:

A = XΛX−1 ≡
(
X1 X2

)( Λ1 0

0 Λ2

)(
Y ∗
1

Y ∗
2

)
and H = ZΛ̃Z−1 , (1.1)

respectively, where X ∈ Cn×n, Z ∈ Cm×m , X1 ∈ Cn×m (m ≤ n),

Λ1 = diag(λ1, λ2, · · · , λm), Λ2 = diag(λm+1, λm+2, · · · , λn),
∼

Λ= diag(
∼

λ1,
∼

λ2, · · · ,
∼

λm).

Let A and H have the decomposition (1.1). Then δi is denoted by

δi = min
λ∈λ(Λi),λ̃∈λ(Λ̃)

|λ− λ̃|, i = 1, 2. (1.2)

Notice that the decomposition (1.1) implies that

X−1 =

(
Y ∗
1

Y ∗
2

)
. (1.3)

Let

R = AQ1 −Q1H (1.4)

be the residual matrix of A with Q1, where A ∈ Cn×n, H ∈ Cm×m and Q1 ∈ Cn×m (m ≤ n),

rank(Q1) = m. The spectrum of H is denoted by σ(H) = {
∼

λ1,
∼

λ2, · · · ,
∼

λm}.
The quantity ||R|| can be used to measure the difference between the spectrum σ(H) and

the spectrum σ(Λ1) , and between the subspace ℜ(Q1) and the approximate subspace ℜ(X1).

Some classical results in this topic are listed below:
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1.1. Approximate eigenvalues

If A and H are Hermitian matrices and Q1 has orthonormal columns, Kahan proved that

there exists a permutation τ of 〈m〉 such that the following bound

m∑

i=1

|λτ(i) − λ̃i|2 ≤ 2||R||2F (1.5)

holds (e.g., see [17]), where 〈m〉 = {1, 2, ...,m}.
If A is Hermitian andQ1 has the orthonormal columns, H = Q∗

1AQ1 is the Rayleigh quotient

matrix, then it holds that [15]

m∑

i=1

|λi − λ̃i|2 ≤ ‖ sinΘ(Q1, X1)‖22
1− ‖ sinΘ(Q1, X1)‖22

||R||2F , (1.6)

where the angle matrix Θ(Y,
∼

Y ) between subspaces ℜ(Y ) and ℜ(
∼

Y ) is defined by

Θ(Y,
∼

Y ) = arccos((Y ∗Y )−
1
2Y ∗

∼

Y (
∼

Y ∗
∼

Y )−1
∼

Y ∗ Y (Y ∗Y )−
1
2 )

1
2 ,

Y and
∼

Y ∈ Cn×k(n > k) are full column rank matrices. In particular, if Y and
∼

Y ∈ Cn×k(n > k)

have orthonormal columns, then for any unitarily invariant norm || · || we have

|| sinΘ(Y,
∼

Y )|| = ||(
∼

Y c)
∗Y ||, (1.7)

where (
∼

Y ,
∼

Y c) is an n× n unitary matrix (e.g., see [13]).

If A and H are diagonalizable matrices with the decomposition (1.1), and Q1 has full column

rank, then Liu [11] obtained a result as follows: There exists a permutation τ of 〈m〉 such that

σ2
min(Q1)

m∑

i=1

|λ
τ(i)

− λ̃i|2 ≤ κ2(X)κ2(Z)||R||2F , (1.8)

where σmin(Q1) denotes the smallest singular value of Q1. In particular, if A and H are Her-

mitian matrices, then

σ2
min(Q1)

m∑

i=1

|λ
τ(i)

− λ̃i|2 ≤ ||R||2F . (1.9)

It is easy to see that the bound (1.9) generalizes the one in (1.5).

1.2. Approximate eigenspaces

If A and H are Hermitian matrices and Q1 has orthonormal columns, Kahan and Davis [1]

obtained a well-known result, i.e., sinΘ Theorem:

‖ sinΘ(Q1, X1)‖F ≤ ‖R‖F
δ2

(1.10)

provided δ2 > 0, where δ2 is given by (1.2). If A and H are Hermitian matrices, and Q1 is a

full column rank matrix, then (see, e.g., [13])

σmin(Q1)‖ sinΘ(Q1, X1)‖F ≤ ‖R‖F
δ2

(1.11)


