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Abstract

In this paper, we propose an algorithm for isolating real roots of a given univariate

spline function, which is based on the use of Descartes’ rule of signs and de Casteljau

algorithm. Numerical examples illustrate the flexibility and effectiveness of the algorithm.
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1. Introduction

The relationship between the number of real roots of a univariate spline and the sequence of

its B-spline coefficients has been studied by de Boor [1] and Goodman [5], which provides a new

bounds on the number of real roots of the spline function. However, the specific distribution

of real roots of a given univariate spline based on its signs and sizes of B-spline coefficients

have not been investigated. The specific distribution can provide a good selection of initial

approximations to all of its real roots in order to get started for iterative methods.

In 1989, Grandine [6] proposed a method for finding all real roots of a spline function based

on the interval Newton method. It is primarily based on iteratively dividing the domain into

segments that contain a zero, by using estimates for the derivatives of the spline function based

on knot insertion. However, if we know the isolating intervals of a given spline function, then

it will greatly reduce the computational cost for finding all of its real roots.

It is well known that there are several algorithms for polynomial real root isolation based

on the use of Descartes’ rule of signs, such as Uspensky’s algorithm (see [2, 7] and references

therein). It can be regarded as a preconditioned process for computing all the real roots of a

given polynomial.

In this paper, we propose an algorithm for computing a sequence of disjoint intervals such

that each of them contains exactly one real root of a given univariate spline, which is primarily

based on the use of Descartes’ rule of signs with its B-spline coefficients and de Casteljau

algorithm. Numerical examples are also provided to illustrate the flexibility of the proposed

algorithm.

2. Preliminaries

We begin by defining the class of spline functions of interest [8, 9]. Take integers m, n ≥ 0

and a non-decreasing sequence t = (t0, t1, · · · , tm+n+1) with ti < ti+n+1, i = 0, 1, · · · , m. For
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i = 0, 1, · · · , m, let Ni,n(x) denote the B-spline of degree n with knots ti, · · · , ti+n+1. For a

constant sequence c = (c0, · · · , cm), we let

s(x) =

m
∑

i=0

ciNi,n(x), t0 < x < tm+n+1. (2.1)

In [5], Goodman proved that the bounds on the number of real roots of the spline function

z(s) ≤ S(c) (2.2)

under the following condition

Condition(c, t) : ∀ x ∈ (t0, tm+n+1), ∃ i, s.t. ti < x < ti+n+1 and ci 6= 0, (2.3)

where z(s) denotes the number of real roots of the spline function s(x), and S(c) denotes the

number of sign variations in the sequence c.

Obviously, Condition(c, t) implies that s(x) cannot vanish on any nontrivial interval in

(t0, tm+n+1).

Let us first recall Descartes’ rule of signs [7]:

Theorem 2.1. (Descartes’ rule of signs) Let P (x) =
∑n

i=0 aix
i be a polynomial in R[x].

If we denote by S(a) the number of sign variations in the sequence a = (a0, a1, · · · , an), and

pos(P ) the number of positive real roots of P (x) counted with multiplicities, then pos(P ) ≤ S(a),

and pos(P ) − S(a) is even.

We remark that Descartes’ rule of signs gives the exact number of roots if and only if there

is one or no sign variation.

Note that the following direct consequences of sign variations: for any real number sequence

b = (bi, · · · , bj), if bibj > 0, then b has an even number of sign variations. Moreover, if bibj < 0,

then b has an odd number of sign variations.

Throughout this paper, we assume cj = 0 when j < 0 and j > m. For a spline function

s(x) defined by (2.1), we have

si(x) = s(x) |[ti,ti+1]=

i
∑

j=i−n

cjNj,n(x) ∈ Pn,

where Pn denotes the set of all univariate polynomials with real coefficients and degree not

exceeding n. Therefore, it can be written in Bézier form:

si(x) =

n
∑

j=0

bi,jBj,n(t), t ∈ [0, 1] (2.4)

under the coordinate transformation

t =
x − ti

ti+1 − ti
, x ∈ [ti, ti+1], (2.5)

where Bj,n(t) = Cj
n tj(1 − t)n−j is the Bernstein polynomial.

Recall that the Bézier curve si(x) defined by (2.4) enjoys the variation diminishing property

[4]: the curve has no more intersections with any line other than the polygon

Pi = {(
j

n
, bi,j)}

n
j=0,


