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LAMFA, Université de Picardie, CNRS, 33, rue Saint-Leu, 80039 Amiens, France

S. M. Mefire

CMAP, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau, France

Email: seraphin.mefire@u-picardie.fr

Abstract

This work deals with the numerical localization of small electromagnetic inhomo-

geneities. The underlying inverse problem considers, in a three-dimensional bounded do-

main, the time-harmonic Maxwell equations formulated in electric field. Typically, the

domain contains a finite number of unknown inhomogeneities of small volume and the

inverse problem attempts to localize these inhomogeneities from a finite number of bound-

ary measurements. Our localization approach is based on a recent framework that uses an

asymptotic expansion for the perturbations in the tangential boundary trace of the curl

of the electric field. We present three numerical localization procedures resulting from the

combination of this asymptotic expansion with each of the following inversion algorithms:

the Current Projection method, the MUltiple SIgnal Classification (MUSIC) algorithm,

and an Inverse Fourier method. We perform a numerical study of the asymptotic expan-

sion and compare the numerical results obtained from the three localization procedures in

different settings.
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1. Introduction

The localization of inhomogeneities contained in a domain is of great importance since it

has several practical applications: identification of cancer tumors, detection of anti-personnel

mines, localization of cracks,· · · . Usually, when we seek to localize an inhomogeneity contained

in a domain, we are concerned with an inverse problem for retrieving the geometry of the

inhomogeneity or for imaging the physical parameter that characterizes the heterogeneity of

the domain.

Recently, several works have been devoted to the numerical analysis of the localization of

inhomogeneities (see, e.g., [3, 5, 6, 10, 24]), in particular in the field of Electrical Impedance

Tomography (EIT). The localization model proposed by Cedio-Fengya et al. [10] consists of

identifying inhomogeneities of small volume by combining an asymptotic formula with an in-

version algorithm. Typically, in [10], the conductivity problem is set in a bounded domain

containing a finite number of unknown inhomogeneities of small volume. The inversion algo-

rithm makes use of the asymptotic formula (for perturbations in the voltage potential), and is
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based on a minimization procedure of least-squares type for the calculation of the geometrical

parameters of the inhomogeneities (namely the centers and diameters when these are balls for

example). Another reconstruction approach of these small conductivity inhomogeneities, also

based on a nonlinear minimization procedure, is the one that consists of imaging the electric

conductivity in the domain (see, e.g., [3]). Regarding the same conductivity problem, Ammari

et al. proposed in [5] a localization process of small inhomogeneities, where the asymptotic

formula of [10] is considered for measuring boundary voltage perturbations initiated by electric

currents applied on the boundary of the domain. Limited current-to-voltage pairs on the bound-

ary are then used as data of the inversion algorithm which consists, here, of solving a linear

system for locating a single inhomogeneity, or of calculating a discrete inverse Fourier transform

of a sample of measurements in the case of the localization of multiple inhomogeneities. The

inversion algorithm in [5] is then, in contrast to the one of [10], non-iterative and based on one

of two linear methods: the Current Projection method (for locating a single inhomogeneity) or

the Inverse Fourier method (for locating multiple inhomogeneities).

Volkov formulates in [24] an algorithm based also on the Inverse Fourier method for locating

small dielectric inhomogeneities in a two-dimensional bounded domain, from an asymptotic

expansion (introduced elsewhere in [5]) for the study of the perturbations in the electric field

satisfying the Helmholtz equation. The development of this algorithm is also described in [24]

for the identification of three-dimensional dielectric inhomogeneities of small volume, from the

far field pattern at a fixed frequency.

In the context of localization in an unbounded domain, Ammari et al. have developed in

[1] an algorithm for locating small two-dimensional inclusions buried in a half-space from the

scattering amplitude at a fixed frequency. In [1], the continuous problem is set with the help of

the two-dimensional Helmholtz equation, an asymptotic expansion of the scattering amplitude

is presented, and the inversion algorithm is essentially a method for characterizing the range of

a self-adjoint operator. This is a linear method, called MUSIC (MUltiple SIgnal Classification),

generally used in signal processing theory, and known for estimating the individual frequencies

of multiple-harmonic signals [23].

We refer to [3, 4, 8, 12, 14, 17, 19, 21, 22] for other numerical methods, as well as for

tools, aimed at solving the reconstruction problem of conductivity inhomogeneities, elastic

inhomogeneities, and dielectric inhomogeneities, in different settings.

More recently, Ammari et al. [6] have introduced a framework for the localization of three-

dimensional electromagnetic inhomogeneities. This framework considers the time-harmonic

Maxwell equations in a three-dimensional bounded domain Ω containing a finite number m of

unknown inhomogeneities of small volume, and proposes to localize these inhomogeneities from

an asymptotic expansion of the perturbation in the (tangential) boundary magnetic field. In

the presence of well-separated inhomogeneities, and also distant from ∂Ω, the boundary of Ω,

the asymptotic expansion states that, for any z ∈ ∂Ω,

(Hα −H0)(z) × ν(z) − 2

∫

∂Ω

curlz(Φ
k(x, z)(Hα −H0)(x) × ν(x)) × ν(z) dσx

= 2α3ω2
m

∑

j=1

µ0

µj

(µ0 − µj)G(zj , z) × ν(z)M j(
µ0

µj

)H0(zj)

+2α3
m

∑

j=1

(
1

εj

−
1

ε0
)((curlxG)(zj , z))

T × ν(z)M j(
ε0
εj

)(curlxH0)(zj) + O(α4) . (1.1)


