LOCAL A PRIORI AND A POSTERIORI ERROR ESTIMATE OF TQC9 ELEMENT FOR THE BIHARMONIC EQUATION*

Ming Wang
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
Email: mwang@math.pku.edu.cn
Weimeng Zhang
Graduate School, The Chinese Academy of Social Sciences, Beijing 100102, China
Email: sirius_1982@sohu.com

Abstract

In this paper, local a priori, local a posteriori and global a posteriori error estimates are obtained for TQC9 element for the biharmonic equation. An adaptive algorithm is given based on the a posteriori error estimates.

Mathematics subject classification: 65N30. Key words: Finite element, Biharmonic equation, A priori error estimate, A posteriori error estimate, TQC9 element.

1. Introduction

For a posteriori error estimates of finite elements, there has been a great deal of work (see, e.g., $[1-5,9,14]$ and references therein). Most of the finite elements considered are mainly for the second-order partial differential equations. In the recent paper [12], local a priori and a posteriori error estimates of conforming and nonconforming elements for the biharmonic equation were discussed. In this paper, we consider the TQC9 element for the biharmonic equation.

The TQC9 (9-parameter quasi-conforming triangle) element was proposed by Tang et al. $[6,8]$ for the biharmonic equation. The TQC9 element also uses the degrees of freedom of the Zienkiewicz element, but unlike the Zienkiewicz element, it is convergent. The convergence property and a global a priori error estimate of the TQC9 element were proved in [10, 15, 16]. Here we will show local a priori, local a posteriori and global a posteriori error estimates of the TQC9 element.

Let $\Omega \subset R^{2}$ be a bounded polygonal domain with boundary $\partial \Omega$. For $f \in L^{2}(\Omega)$, we consider the homogeneous Dirichlet boundary value problem of the biharmonic equation:

$$
\left\{\begin{array}{l}
\Delta^{2} u=f, \quad \text { in } \Omega \tag{1.1}\\
\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $\nu=\left(\nu_{1}, \nu_{2}\right)^{\top}$ is the unit outer normal of $\partial \Omega$ and Δ is the standard Laplace operator.
Given a bounded domain $B \subset R^{2}$ and an integer m, let $H^{m}(B), H_{0}^{m}(B),\|\cdot\|_{m, B}$ and $|\cdot|_{m, B}$ denote the Sobolev space, the closure of $C_{0}^{\infty}(B)$ in $H^{m}(B)$, the corresponding Sobolev norm and semi-norm respectively. Let $H^{-m}(\Omega)$ denote the dual space of $H_{0}^{m}(\Omega)$ with norm $\|\cdot\|_{-m, \Omega}$.

[^0]Let $i, j \in\{1,2\}$ and $\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial_{i j}=\partial_{i} \partial_{j}$. For a function $v \in H^{2}(\Omega)$, we define

$$
\begin{equation*}
E(v)=\left(\partial_{11} v, \partial_{22} v, \partial_{12} v\right)^{\top} \tag{1.2}
\end{equation*}
$$

Let $\sigma \in\left[0, \frac{1}{2}\right]$ be the Poisson ratio and

$$
K=\left(\begin{array}{ccc}
1 & \sigma & 0 \tag{1.3}\\
\sigma & 1 & 0 \\
0 & 0 & 2(1-\sigma)
\end{array}\right)
$$

Define

$$
\begin{equation*}
a(v, w)=\int_{\Omega} E(w)^{\top} K E(v), \quad \forall v, w \in H^{2}(\Omega) . \tag{1.4}
\end{equation*}
$$

The weak form of problem (1.1) is: find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v), \quad \forall v \in H_{0}^{2}(\Omega) \tag{1.5}
\end{equation*}
$$

where (\cdot, \cdot) is the inner product of $L^{2}(\Omega)$.
The TQC9 element for problem (1.5) and some known results will be given in Section 2. Section 3 will discuss local a priori error estimate of the TQC9 element. Section 4 will consider a posteriori error estimate. The last section gives some numerical results of an adaptive algorithm based on the a posteriori error estimate obtained.

2. TQC9 Element

Let $\left(T, P_{T}, \Phi_{T}\right)$ be the Zienkiewicz element with T a triangle, P_{T} the shape function space and Φ_{T} the set of nodal parameters consisting of the function values and two first order derivatives at three vertices of T (cf. [7]).

Let $\left\{\mathcal{T}_{h}(\Omega)\right\}$ be a family of shape regular triangulations by triangles with mesh size $h \rightarrow 0$. Let $h(x)$ be the function with its value the diameter h_{T} of the element T containing x.

Corresponding to $\mathcal{T}_{h}(\Omega)$, denote by $V_{h}(\Omega)$ and $V_{h 0}(\Omega)$ the Zienkiewicz element spaces with respect to $H^{2}(\Omega)$ and $H_{0}^{2}(\Omega)$ respectively. It is known that $V_{h}(\Omega) \not \subset H^{2}(\Omega), V_{h 0}(\Omega) \not \subset H_{0}^{2}(\Omega)$, and $V_{h}(\Omega) \subset H^{1}(\Omega), V_{h 0}(\Omega) \subset H_{0}^{1}(\Omega)$. Given $G \subset \Omega, V_{h}(G)$ and $\mathcal{T}_{h}(G)$ are the restrictions of $V_{h}(\Omega)$ and $\mathcal{T}_{h}(\Omega)$ to G, respectively. Set

$$
\begin{equation*}
V_{h 0}(G)=\left\{v \in V_{h 0}(\Omega): \operatorname{supp} v \subset \bar{G}\right\} \tag{2.1}
\end{equation*}
$$

For any $G \subset \Omega$ mentioned in this paper, we assume that it aligns with $\mathcal{T}_{h}(\Omega)$ when it is necessary.
For nonnegative integer k and $T \in \mathcal{T}_{h}(\Omega)$, let $P_{k}(T)$ denote the set of all polynomials with degree not greater than k. Let Π_{T}^{1} be the linear interpolation operator with the function values at three vertices of T.

For $p \in P_{T}$, define $\partial_{i j, T} p \in P_{1}(T), i, j \in\{1,2\}$, such that $\partial_{12, T} p=\partial_{21, T} p$ and for any $q \in P_{1}(T)$,

$$
\left\{\begin{array}{l}
\int_{T} q \partial_{11, T} p=\int_{\partial T} q \Pi_{T}^{1} \partial_{1} p \nu_{1}-\int_{T} \partial_{1} q \partial_{1} p, \tag{2.2}\\
\int_{T} q \partial_{22, T} p=\int_{\partial T} q \Pi_{T}^{1} \partial_{2} p \nu_{2}-\int_{T} \partial_{2} q \partial_{2} p, \\
2 \int_{T} q \partial_{12, T} p=\int_{\partial T} q\left(\Pi_{T}^{1} \partial_{2} p \nu_{1}+\Pi_{T}^{1} \partial_{1} p \nu_{2}\right)-\int_{T}\left(\partial_{2} q \partial_{1} p+\partial_{1} q \partial_{2} p\right) .
\end{array}\right.
$$

[^0]: * Received March 7, 2006 / Revised version received November 5, 2006 / Accepted May 15, 2007 /

