A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS*

Houde Han and Ming Yan
Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
Email: hhan@math.tsinghua.edu.cn, yanm@math.ucla.edu

Abstract

In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral $Q_{1} \times Q_{1}-P_{0}$ element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to illustrate the effectiveness of the proposed method.

Mathematics subject classification: 35Q30, 74G15, 74S05.
Key words: Mixed finite element method, Staggered mesh, Navier-Stokes equations, Error estimate.

1. Introduction

It is well known that the simplest conforming low-order elements like the $P_{1}-P_{0}$ (linear velocity vector, constant pressure) triangular element and $Q_{1}-P_{0}$ (bilinear velocity vector, constant pressure) quadrilateral element are not stable when applied to the Navier-Stokes (NS) equations [6]. Therefore, some special treatments are needed in order to keep the schemes stable. During the last two decades, there has been a rapid development in practical stabilization technique for the $P_{1}-P_{0}$ element and the $Q_{1}-P_{0}$ element for solving the NS equations $[1,7,8,9,11]$. In [3], an economical finite element scheme is proposed to construct three finitedimensional subspaces for the two velocity components and the pressure. In [2], a mixed finite element scheme for the Stokes equations is investigated. In this paper, we extend the idea in [3] to construct a mixed finite element scheme for the NS equations, which is more efficient than the scheme given in [3] as the degree of freedom is reduced. The optimal error estimate of this scheme is obtained.

The outline of the paper is as follows. In the next section, we give a formulation of the mixed finite element method for the Navier-Stokes equations. In Section 3, the error estimates will be provided. In Section 4, two numerical examples will be considered. Finally, we end the paper with a short concluding section.

2. A Mixed Finite Element Formulation for the NS Equations

We consider the following boundary value problem of the Navier-Stokes equations:

$$
\begin{cases}-\nu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=\mathbf{f}, & \text { in } \Omega \tag{2.1}\\ \operatorname{div} \mathbf{u}=0, & \text { in } \Omega \\ \mathbf{u}=0, & \text { on } \partial \Omega\end{cases}
$$

[^0]

Fig. 2.1. Quadrangulations: (a) \mathcal{J}_{h}, (b) \mathcal{J}_{h}^{1}, (c) \mathcal{J}_{h}^{2}.
where $\Omega \subset \mathrm{R}^{2}$ is a rectangular domain, ν is the viscosity, $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}$ represents the velocity vector, p is the pressure, and $\mathbf{f}=\left(f_{1}, f_{2}\right)^{T}$ is the given body force. Let $H^{n}(\Omega)$ and $H_{0}^{1}(\Omega)$ denote the standard Sobolev spaces with the norm $\|\cdot\|_{n, \Omega}$ and $\|\cdot\|_{1, \Omega}$ respectively. Furthermore, let

$$
\mathbf{V} \equiv H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega), \quad M \equiv\left\{q: q \in L^{2}(\Omega) \text { and } \int_{\Omega} q d x=0\right\}
$$

Then the boundary value problem (2.1) is reduced to the following equivalent variational problem [3]:

$$
\begin{cases}\text { Find } \mathbf{u} \in \mathbf{V} \text { and } p \in M, \text { such that } & \tag{2.2}\\ a(\mathbf{u}, \mathbf{v})+a_{1}(\mathbf{u} ; \mathbf{u}, \mathbf{v})+b(\mathbf{v}, p)=(\mathbf{f}, \mathbf{v}) & \forall \mathbf{v} \in \mathbf{V} \\ b(\mathbf{u}, q)=0 & \forall q \in M\end{cases}
$$

where

$$
\begin{aligned}
& a(\mathbf{u}, \mathbf{v})=\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d x \\
& a_{1}(\mathbf{w} ; \mathbf{u}, \mathbf{v})=\frac{1}{2} \sum_{i, j=1}^{2} \int_{\Omega} w_{j}\left(\frac{\partial u_{i}}{\partial x_{j}} v_{i}-\frac{\partial v_{i}}{\partial x_{j}} u_{i}\right) d x \\
& b(\mathbf{v}, q)=-\int_{\Omega} q \operatorname{div} \mathbf{v} d x, \quad(\mathbf{f}, \mathbf{v})=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} d x
\end{aligned}
$$

For simplicity we assume that the domain Ω is a unit square, but the finite element method discussed below can be easily generalized to include the case that the domain Ω is rectangular. Let N be a given integer and $h=1 / N$. We shall construct the finite-dimensional subspaces of \mathbf{V} and M by introducing three different quadrangulations $\mathcal{J}_{h}, \mathcal{J}_{h}^{1}, \mathcal{J}_{h}^{2}$ of Ω. First we divide Ω into equal squares

$$
T_{i, j}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}\right)_{i-1} \leq x_{1} \leq\left(x_{1}\right)_{i},\left(x_{2}\right)_{j-1} \leq x_{2} \leq\left(x_{2}\right)_{j}\right\}, \quad i, j=1, \cdots, N
$$

where $\left(x_{1}\right)_{i}=i h$ and $\left(x_{2}\right)_{j}=j h$. The corresponding quadrangulation is denoted by \mathcal{J}_{h}. Then for all $T_{i, j} \in \mathcal{J}_{h}$ we connect all the midpoints of the vertical sides of $T_{i, j}$ by straight line segments if the midpoints have a distance h, and extend the resulting mesh to the boundary Γ. Then Ω is divided into squares and rectangles, and the corresponding quadrangulation is denoted by \mathcal{J}_{h}^{1}. Similarly, for all $T_{i, j} \in \mathcal{J}_{h}$ we connect all the midpoints of the horizontal sides of $T_{i, j}$ by straight line segments if the midpoints have a distance h, and extend the resulting mesh to the boundary Γ. Then we obtained the third quadrangulation of Ω, which is denoted by \mathcal{J}_{h}^{2} (see Fig. 2.1).

[^0]: * Received January 18, 2007 / Revised version received December 4, 2007 / Accepted January 3, 2008 /

