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Abstract

Some two-scale finite element discretizations are introduced for a class of linear partial
differential equations. Both boundary value and eigenvalue problems are studied. Based
on the two-scale error resolution techniques, several two-scale finite element algorithms
are proposed and analyzed. It is shown that this type of two-scale algorithms not only
significantly reduces the number of degrees of freedom but also produces very accurate
approximations.
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1. Introduction

It is a challenging task to solve 3−dimensional (3d) partial differential equations by con-
ventional discretization methods, due to storage requirements and computational complexity.
Usually, both storage requirements and running time grow tremendously when the number
of degrees of freedom for approximate solutions increases. Thus, for 3d applications such as
problems from computational materials science, computational chemistry and computational
biology, the most elaborate solver routines like multigrid or multilevel methods should be ap-
plied in order to obtain numerical solutions with satisfactory accuracy. Additionally, the code
should be implemented on a high-performance computer.

To reduce the computational cost, including the computational time and the storage require-
ment, some new two-scale finite element discretizations for solving partial differential equations
in 3d are introduced in this paper. The main idea of our new discretizations is to use a coarse
grid to approximate the low frequencies and to combine some univariate fine and coarse grids
to handle the high frequencies by some parallel procedures. These discretizations are based
on our understanding of the frequency resolution of a finite element solution to some elliptic
problem. For a solution to an elliptic problem, it is shown that low frequency components
can be approximated well on a relatively coarse grid and high frequency components can be
computed on a fine grid (see, e.g., [4, 17, 25, 31]). It is also observed that for elliptic problems
on tensor product domains, a part of high frequencies results from the tensor product of the
univariate low frequencies, which can then be damped out by the tensor product of some fine
and coarse grids.
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We now give a somewhat more detailed but informal (and hopefully informative) description
of the main ideas and results in this paper. Consider an elliptic boundary value problem in
domain Ω = (0, 1)3. Let Phx1

,hx2
,hx3

u be the standard trilinear finite element solution, that is,

the Ritz-Galerkin approximation, of a partial differential equation on a uniform grid T hx1
,hx2

,hx3

with mesh size hx1
in x1−direction, hx2

in x2−direction and hx3
in x3−direction, respectively.

Then, a two-scale finite element approximation, which is nothing but a simple combination of
different standard finite element solutions of the original problem over different scale meshes,
is constructed as follows (see Section 3):

P h
H,H,Hu ≡ Ph,H,Hu + PH,h,Hu + PH,H,hu − 2PH,H,Hu,

where H ≫ h.
In this two-scale approximate scheme, only partially refined meshes are involved, and the

following result for a class of partial differential equations can be established (see Theorem 3.1)

‖u − P h
H,H,Hu‖1,Ω = O(h + H2), (1.1)

where u is the exact solution of the partial differential equation.
This is a very satisfactory result in many ways. Consequently, for example, we obtain

an asymptotically optimal approximation P h
H,H,Hu in parallel by taking H = O(

√
h) and the

number of degrees of freedom for obtaining P h
H,H,Hu is only of O(h−2), while that for the

standard finite element solution Ph,h,hu with the same approximate accuracy is of O(h−3).
We may also design efficient two-scale approximate schemes for other problems. For instance,

consider the following eigenvalue problem posed on Ω:
{

−∇(a∇u) = λu, in Ω,
u = 0, on ∂Ω,

(1.2)

where a is a positive smooth function on Ω̄. We may employ the following algorithm to approx-
imate (1.2) (see Section 4):

1. Solve (1.2) on a coarse grid: find (uH,H,H , λH,H,H) ∈ SH,H,H
0 (Ω) × R1 such that

∫

Ω

a|∇uH,H,H |2 = 1 and
∫

Ω

a∇uH,H,H∇v = λH,H,H

∫

Ω

uH,H,Hv, ∀v ∈ SH,H,H
0 (Ω). (1.3)

2. Compute the linear boundary value problems on partially fine grids in parallel:

find uh,H,H ∈ Sh,H,H
0 (Ω) such that
∫

Ω

a∇uh,H,H∇v = λH,H,H

∫

Ω

uH,H,Hv, ∀v ∈ Sh,H,H
0 (Ω);

find uH,h,H ∈ SH,h,H
0 (Ω) such that
∫

Ω

a∇uH,h,H∇v = λH,H,H

∫

Ω

uH,H,Hv, ∀v ∈ SH,h,H
0 (Ω);

find uH,H,h ∈ SH,H,h
0 (Ω) such that
∫

Ω

a∇uH,H,hv = λH,H,H

∫

Ω

uH,H,Hv, ∀v ∈ SH,H,h
0 (Ω).

3. Set
uh

H,H,H = uh,H,H + uH,h,H + uH,H,h − 2uH,H,H

and

λh
H,H,H =

∫

Ω

a|∇uh
H,H,H |2

∫

Ω

|uh
H,H,H |2

,


