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Abstract

In this paper, a mortar finite element method for parabolic problem is presented. Multi-
grid method is used for solving the resulting discrete system. It is shown that the multigrid
method is optimal, i.e, the convergence rate is independent of the mesh size L and the time
step parameter 7.

Key words: Multigrid, Mortar element, Parabolic problem.

1. Introduction

The mortar finite element is a new type of domain decomposition method, which can handle
the situations where subdomain meshes may be separately constructed and nonmatching along
the interface. We refer the reader for the general presentation of the mortar element method
to [3]. In [1], some domain decomposition preconditioners were constructed for the discrete
system of the mortar element method. Recently, a variable V-cycle multigrid preconditioner
and a W-cycle multigrid for the mortar element method were presented in [7],[4].

The objective of this paper is to study the mortar finite element for parabolic problem.
First, we extend the results in [3] to parabolic problem. An optimal energy error is obtained.
Meanwhile, we consider a multigrid method for solving the discrete system resulting from the
mortar finite element method. It is shown that the multigrid method is optimal, i.e., the
convergence rate is independent of the mesh size L and the time step parameter 7.

2. Parabolic Problem

Consider the following parabolic problem: to find u(z,t) such that

O tw =f in Qx0T

ot
u(z,t) =0 in 9Qx[0,T), (2.1)
U(l‘,O) ZUO(Z’),
where 2 C R? is a bounded domain, f € L2(2). £ is an elliptic operator

d

Lu=-)" %(%(m)g—;). (2.2)

ij=1

* Received May 25, 2000.
1) The research was supported by the Special Funds for Major State Basic Research Projects G1999032804
and a grant from LIAMA.



412 X.J. XU AND J.R. CHEN

Here a;;(z) satisfies
d

gl < Z aij&€; < 08¢ Vo e Q,¢ € RY, (2.3)

i,j=1

where ¢,C are positive constants.
The variational form of (2.1) is to find u € H}(Q), u(z,0) = ug(x) such that

0
(57+0) +Blu,v) = (£,v) Vo€ H)(Q), te0,T], (2.4)
where the bilinear form B is
d
B Ou Ov 1
B(u,v) = /ngl a;j 9z, Oz, dx Yu,v € H (Q)

and

(fv) = /vad:n.

We refer the notations of Sobolev space to [6] for details. It is easily seen that the bilinear form
B(u,v) is

(1). bounded, i.e. |B(u,v)| < Cluli|v|s Vu,v € H ().

(2). elliptic, i.e. |B(u,u)| > Clu|} Vu € HJ().

We use the backward Euler scheme and Crank-Nicolson scheme for the time discretization
[10]. Both schemes are absolutely stable [8]. Let At, be the n'" time step and M; the
number of steps, then Ei/[:ll At, =T. We lead to the following problem: for a given function
gn—1 € L*(Q), find w € H () such that

A (w,v) = 77 (w,v) + Bw,v) = (gn_1,v) Vv € Hy(Q), (2.5)
where 7 is the time step parameter. For the backward Euler scheme, we have
w=u"—u"t,
T = Aty,

(gn—la ’U) = (fa ’U) - B(U’n_la ’U),
and for the Crank-Nicolson scheme, we have

w=u" _un—l,

T = At,/2,
(gn-1,v) = 2((f,v) = B(u""1,0)).
It is known [6] that if Q is a convex polygon, then for any g € L?(2), there exists a solution
u € H2(Q) N HL(Q) of
B(u,v) = (g,v), Yo € H(Q) (2.6)

with
llullz < Cllgllo- (2.7)

Here and throughout this paper, ¢ and C' (with or without subscript) denote generic positive
constants, independent of the time step parameter 7, the mesh parameters L and h;, which will
be stated below.

Based on the regularity assumption (2.7), we have
Lemma 2.1. For any g € L?(2), the equation

Ar(u,v) = (g,v) Vv € Hy(Q) (2.8)



