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Abstract

In Part I and Part II of this paper initial-boundary value problems of the
acoustic wave equation with absorbing boundary conditions are considered. Their
finite element-finite difference computational schemes are proposed. The stability
of the schemes is discussed and the corresponding stability conditions are given.
Part I and Part II concern the first- and the second-order absorbing boundary
conditions, respectively. Finally, numerical results are presented in Part II to show
the correctness of theoretical analysis.

Key words: Stability, Finite element methods, Wave equation, Absorbing boundary
conditions

1. Introduction

In the numerical simulation of wave propagation in unbounded or semi-unbounded
medium it is necessary to introduce artificial boundaries to obtain finite computational
regions. Then some boundary conditions have to be imposed on these boundaries, which
should eliminate the reflection of waves at artificial boundaries, so that the obtained
solutions rather accurately simulate the solutions in the unbounded domains. (That is
why they are called absorbing boundary conditions). The conditions on the artificial
boundaries should also guarantee the well-posedness of solutions to the differential
equations, which is a necessary condition for the stability of the finite difference or the
finite element approximations.

In recent thirty years, a variety of absorbing boundary conditions for wave equations
have been developed (see [1]). What is most widely used was given by Clayton and
Engquistm, Engquist and Majda [3:4] based on the pseudodifferential operator theory.
A hierarchy of differential boundary conditions was derived to approximate the bound-
ary conditions of the pseudodifferential operator forms. Let the artificial boundary be
z = 0, and the domain be ¢ > 0,z < 0. For the acoustic wave equation
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the mentioned conditions are the followings:
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The corresponding conditions for the elastic wave equations are complicated, and we
are not going to write them here.

In [3], the well-posedness of (1.2) (i.e., the Clayton-Engquist-Majda conditions for
the acoustic wave equation) when N < 3 has been proved. In [5], the authors of this
paper generalize (1.2) to the anisotropic elastic wave equations and have proved that the
Clayton-Engquist-Majda conditions for the elastic wave equations are ill posed when
N > 2.

In this paper, only the acoustic wave equation
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is discussed. But some conclusions are significant also for other wave equations.

In numerical computations, the equation (1.3) with absorbing boundary conditions
is approximated usually by finite difference schemes, and seldom by finite element ap-
proaches. The author of [6] affirmed that the main difficulty comes from the order of
the boundary conditions for which it is not easy to derive a weak formulation which
provides a suitable energy estimate. In [6], therefore, a third-order energy is intro-
duced, and a first-order hyperbolic system of 7 unknowns is derived, for which finite
element methods can be applied. Obviously, this approach is not desirable for practical
computation.

In this paper, finite element-finite difference schemes for the equation (1.3) with
the first and second order absorbing boundary conditions of (1.2) are proposed. Their
stability is discussed, and the stability conditions are given. The Part I is devoted
to the first order absorbing boundary condition, and the Part II to the second order
boundary condition. The numerical results are presented in the Part II, which show
the correctness of the theoretical conclusions.

For the sake of simplicity, we shall restrict ourselves to the two-dimensional case.
The three-dimensional case can be discussed similarly without any difficulty.

2. Finite Element-Finite Difference Schemes

Let the computational domain be Q,Q = {(z,9) : —a < z < a,0 < y < b};
I'y = {(z,y): —a < z < a,y = 0} be a natural boundary, and 9Q' = 99/T"; be the
artificial boundary.

Introduce the inner product notations

(u,v) = //uvd:z:dy, (u,v) :/ uvds.
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Define the space H"*(Q) = {v(z,y) € H'(Q) : v|p, = 0}. It is obvious that H"?(Q) is
a closed subspace of H!(Q).

In the following discussion, let n denote outer normal direction, and s tangential
direction of the boundary 9€2'. Suppose that in (1.3), C(z,y) € L>®(2) and C(z,y) > 0;



