Journal of Computational Mathematics, Vol.17, No.5, 1999, 523–532.

THE NUMERICAL STABILITY OF THE θ-METHOD FOR DELAY DIFFERENTIAL EQUATIONS WITH MANY VARIABLE DELAYS*

Lin Qiu Taketomo Mitsui

(Graduate School of Human Informatics, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8601, Japan)

Jiao-xun Kuang (Department of Mathematics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China)

Abstract

This paper deals with the asymptotic stability of theoretical solutions and numerical methods for the delay differential equations (DDEs)

$$\begin{cases} y'(t) = ay(t) + \sum_{j=1}^{m} b_j y(\lambda_j t) & t \ge 0, \\ y(0) = y_0, \end{cases}$$

where a, b_1, b_2, \ldots, b_m and $y_0 \in C$, $0 < \lambda_m \leq \lambda_{m-1} \leq \ldots \leq \lambda_1 < 1$. A sufficient condition such that the differential equations are asymptotically stable is derived. And it is shown that the linear θ -method is ΛGP_m -stable if and only if $\frac{1}{2} \leq \theta \leq 1$.

Key words: Delay differential equation, Variable delays, Numerical stability, θ -methods.

1. Introduction

In this paper, we will investigate the numerical solutions of the following initial value problems for DDEs with many variable delays

$$\begin{cases} y'(t) = ay(t) + \sum_{j=1}^{m} b_j y(\lambda_j t) & t \ge 0, \\ y(0) = y_0, \end{cases}$$
(1.1)

where a, b_1, b_2, \ldots, b_m and $y_0 \in C$, $0 < \lambda_m \leq \lambda_{m-1} \leq \ldots \leq \lambda_1 < 1$. It is difficult to investigate numerically the long time dynamical behaviour of the exact solution due to limited computer memory. To avoid this problem we transform (1.1) into the differential

^{*} Received August 19, 1996.

equations with constant time lags in the following way. (see [3]) Let $x(t) = y(e^t)$ for $t \ge \log \lambda_m$. Then x(t) satisfies the following initial value problems

$$\begin{cases} x'(t) = ae^{t}x(t) + \sum_{j=1}^{m} b_{j}e^{t}x(t + \log \lambda_{j}) & t \ge 0, \\ x(t) = y(e^{t}) := \Phi(t) & t \in [\log \lambda_{m}, 0], \end{cases}$$
(1.2)

where $y(t), 0 \le t \le e^0 = 1$, can be obtained numerically by using θ -method to (1.1). Then, let us consider the following linear test equations which were introduced in [4],

$$\begin{cases} y'(t) = a(t)y(t) + b(t)y(t-\tau) & \tau > 0, t \ge 0, \\ y(t) = \Phi(t) & -\tau \le t \le 0, \end{cases}$$
(1.3)

where $y: [-\tau, +\infty) \to C$, $a, b: [0, +\infty) \to C$.

If a(t) and b(t) are continuous and satisfy

$$Re(a(t)) \le -\beta < 0, \tag{1.4a}$$

$$|b(t)| \le -q \cdot Re(a(t)), 0 \le q < 1$$
 (1.4b)

and $\Phi(t)$ is continuous, then the solution y(t) of (1.3) is asymptotically stable, namely, $y(t) \to 0$, as $t \to \infty$.

In [4], the authors introduced two definitions of stability based on the test equations (1.3) as follows.

Definition 1. A numerical method for DDEs is called TP-stable if, under the condition (1.4), the numerical solution y_n of (1.3) satisfies

$$\lim_{n \to \infty} y_n = 0 \tag{1.5}$$

for every stepsize h such that $h = \tau/l$ where $l \ge 1$ is a positive integer.

Definition 2. A numerical method for DDEs is called TGP-stable if, under the condition (1.4), the numerical solution y_n of (1.3) satisfies (1.5) for every stepsize h > 0.

It is the purpose of this paper to investigate the asymptotic stability behaviour of the theoretical solution and the numerical solution of (1.1). In Section 2, we derive a sufficient condition for (1.1) such that the solution of (1.1) is asymptotically stable. In Section 3, it is proven that the linear θ -method is ΛGP_m -stable if and only if $\frac{1}{2} \leq \theta \leq 1$.

2. Asymptotic Stability Of The Theoretic Solution Of DDEs

Now we consider the following equations:

$$\begin{cases} x'(t) = a(t)x(t) + b_2(t)x(t - \tau_2) + b_1(t)x(t - \tau_1) & t \ge 0, \tau_2 \ge \tau_1 > 0, \\ x(t) = \Phi(t) & t \le 0, \end{cases}$$
(2.1)

where $x: R \to C$, $a, b_1, b_2: [0, +\infty) \to C$, and $\Phi: (-\infty, 0] \to C$.