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Abstract

In this paper we prove that the solution of implicit difference scheme for a
semilinear parabolic equation converges to the solution of difference scheme for the
corresponding nonlinear stationary problem as t → ∞. For the discrete solution
of nonlinear parabolic problem, we get its long time asymptotic behavior which
is similar to that of the continuous solution. For simplicity, we consider one-
dimensional problem.
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1. Introduction

Let Ω = (0, l), f(x) ∈ L2(Ω), u0(x) ∈ H2(Ω) ∩H1
0 (Ω), φ(u) = u3, we consider the

following initial-boundary value problem:




∂u

∂t
=

∂2u

∂x2
− φ(u) + f(x) in Ω×R+

u(0, t) = u(l, t) = 0

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

By the usual approach[1−4] we can get the global existence of the solution of (1.1),
furthermore, the solution of (1.1) converges to the solution of the following stationary
problem (1.2) as t →∞.





∂2u

∂x2
− φ(u) + f(x) = 0 in Ω

u(0, t) = u(l, t) = 0.
(1.2)
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In this paper we prove that the solution of implicit difference scheme for (1.1)
converges to the solution of difference scheme for (1.2) as t →∞.

2. Finite Difference Scheme

The domain Ω is divided into small segments by points xj = jh (j = 0, 1, · · · , J),
where Jh = l, J is an integer and h is the space stepsize. Let ∆t be the time stepsize.
For any function w(x, t) we denote the values w(jh, n∆t) by wn

j (0 ≤ j ≤ J , n =
0, 1, 2, · · ·) and denote the discrete function wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·) by wn
h . We

introduce the following notations:

∆+wn
j = wn

j+1 − wn
j (0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·)

and
∆−wn

j = wn
j − wn

j−1 (1 ≤ j ≤ J, n = 0, 1, 2, · · ·).

We denote the discrete function
∆+wn

j

h
(0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) by δwn

h .

Similarly, the discrete function
∆2

+wn
j

h2
(0 ≤ j ≤ J − 2, n = 0, 1, 2, · · ·) is denoted by

δ2wn
h .
Denote the scalar product of two discrete functions un

h and vm
h by

(un
h, vm

h ) =
J∑

j=0

un
j vm

j h.

For 2 ≥ k ≥ 0, define discrete norms

‖δkwn
h‖p =

( J−k∑

j=0

∣∣∣
∆k

+wn
j

hk

∣∣∣
p
h
)1

p , +∞ > p > 1

and

‖δkwn
h‖∞ = max

j=0,1,···,J−k

∣∣∣
∆k

+wn
j

hk

∣∣∣.

The difference equation associate with (1.1) is:

un+1
j − un

j

∆t
=

∆+∆−un+1
j

h2
− φ(un+1

j ) + fj (2.1)

for j = 1, · · · , J − 1 and n = 1, 2, · · ·, where fj = f(xj).
The boundary condition of (2.1) is of the form

un
0 = un

J = 0

The discrete form corresponding to (1.2) is:

∆+∆−u∗j
h2

− φ(u∗j ) + fj = 0, 0 < j < J (2.2)


