A CLASS OF C^{1} DISCRETE INTERPOLANTS OVER TETRAHEDRA*

X.C. Liu
(Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China)

Abstract

Smooth interpolants defined over tetrahedra are currently being developed for they have many applications in geography, solid modeling, finite element analysis, etc. In this paper, we will characterize a certain class of C^{1} discrete tetrahedral interpolants with only C^{1} data required. As special cases of the class characterized, we give two C^{1} discrete tetrahedral interpolants which have concise expressions.

1. Introduction

The purpose of the paper is to characterize a certain class of C^{1} discrete interpolants defined over tetrahedra with only C^{1} data required. We assume that a polyhedral domain in three-space or a set of 3D scattered data have been tessellated into tetrahedra with any two of which share only one face. As for this preprocessing stage, one may refer to [2] and [3] and here we omit it. In the paper, we only describe the characterization of an interpolant over a single tetrahedron for the interpolants have the same form. Now we begin our paper with some conceptions and notations.

A discrete interpolant \mathcal{P} is said to interpolate a linear functional \mathcal{L} if $\mathcal{L P} f=f$ for any function f. For simplicity, we sometimes use \mathcal{P} to denote $\mathcal{P} f$ for any function f being interpolated. Denote a general tetrahedron by V with vertices $V_{i}, i=1, \cdots, 4$. Denote its faces by $F_{i}, i=1, \cdots, 4$, with F_{i} opposite to vertex V_{i}, and edges by E_{i}^{j}, $j \neq i$, with E_{i}^{j} opposite to vertices V_{j} and V_{i}, i.e.,

$$
E_{i}^{j}(t)=(1-t) V_{k}+t V_{l}, \quad k, l \neq i, j, \quad k \neq l
$$

Denote edge vectors by $e_{i j}=V_{j}-V_{i}$. Furthermore, denote(see Fig.1)

$$
\begin{equation*}
\boldsymbol{n}_{i}=e_{l i}-\frac{\boldsymbol{n}_{l}^{i} \cdot e_{l i}}{\boldsymbol{n}_{l}^{i} \cdot \boldsymbol{n}_{l}^{i}} \boldsymbol{n}_{l}^{i}, \quad \boldsymbol{n}_{l}^{i}=e_{k l}-\frac{e_{j k} \cdot e_{k l}}{e_{j k} \cdot e_{j k}} e_{j k} \tag{1.1}
\end{equation*}
$$

where $(i, j, k, l) \in \Lambda:=\{(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)\}$, then the directional derivative is computed to be

$$
\begin{equation*}
\frac{\partial b_{i}}{\partial \boldsymbol{n}_{i}}=1, \quad \frac{\partial b_{j}}{\partial \boldsymbol{n}_{i}}=-\frac{\boldsymbol{n}_{l}^{i} \cdot e_{l i}}{\boldsymbol{n}_{l}^{i} \cdot \boldsymbol{n}_{l}^{i}} \cdot \frac{e_{j k} \cdot e_{k l}}{e_{j k} \cdot e_{j k}} \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\frac{\partial b_{k}}{\partial \boldsymbol{n}_{i}}=-\frac{\boldsymbol{n}_{l}^{i} \cdot e_{l i}}{\boldsymbol{n}_{l}^{i} \cdot \boldsymbol{n}_{l}^{i}} \cdot \frac{e_{j k} \cdot e_{l j}}{e_{j k} \cdot e_{j k}}, \quad \frac{\partial b_{l}}{\partial \boldsymbol{n}_{i}}=-1-\frac{\boldsymbol{n}_{l}^{i} \cdot e_{l i}}{\boldsymbol{n}_{l}^{i} \cdot \boldsymbol{n}_{l}^{i}}, \tag{1.3}
\end{equation*}
$$

\]

where $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ is the barycentric coordinate of a point P on tetrahedron V :

$$
P=b_{1} V_{1}+b_{2} V_{2}+b_{3} V_{3}+b_{4} V_{4}, \quad b_{1}+b_{2}+b_{3}+b_{4}=1 .
$$

Fig. 1 Notational conventions on a tetrahedron

2. Interpolation Requirements

Our goal is to characterize the set of discrete tetrahedral interpolants \mathcal{P} which satisfies the following requirements:
(2.1). \mathcal{P} forms C^{1} joins with adjacent interpolants.
(2.2). \mathcal{P} is locally defined, i.e., evaluating the interpolant at a point within a tetrahedron domain requires only data defined on it. This ensures that local changes in the data will only have local effects.

Usually, the construction of a C^{1} tetrahedral interpolant requires the positions and the first derivatives at vertices of the tetrahedron. But the above information is not sufficient to insure C^{1} joins with adjacent interpolants. We restrict \mathcal{P} to satisfy
(2.3). \mathcal{P} interpolates some cross boundary derivatives in addition to the positions and the first derivatives at corners. In order to maintain the interpolation precision and shape fidelity, we insist that
(2.4). \mathcal{P} has cubic precision, i.e., \mathcal{P} reproduces any trivariate polynomial up to cubic degree.

Because a great deal of flexibility can be obtained by using rational functions, we also insist that
(2.5). \mathcal{P} is a rational polynomial in form.

Finally, due to aesthetic reasons we insist that the form of the interpolant \mathcal{P} is not affected by the ordering of the tetrahedron vertices, that is:
(2.6). \mathcal{P} is of tetrahedral symmetric form.

[^0]: * Received January 19, 1995.

