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Abstract

We extend the SCGS smoothing procedure (Symmetrical Collective Gauss–

Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady

viscous incompressible Navier–Stokes equations, to corresponding line–wise ver-

sions. The resulting relaxation schemes are integrated into the multigrid solver

based on second–order upwind differencing presented in [5]. Numerical compar-

isons on the efficiency of point–wise and line–wise relaxations are presented.

1. Introduction

The convection–diffusion behaviour of the viscous incompressible Navier–Stokes

equations is a main source of difficulties in the numerical solution. When discretiz-

ing the equations using finite difference schemes, upwind or hybrid schemes are usually

used on the convection terms for ensuring the stability of the discrete system [1]. The

first–order upwind differencing has proved to be inadequate for the incompressible

Navier–Stokes equations with large Reynolds numbers, although the resulting discrete

systems are very stable and easily solved. In [5], we constructed a multigrid solver based

on second–order upwind differencing and we adapted the SCGS relaxation, which was

originally proposed for hybrid schemes, as the smoothing procedure. It gives good dis-

crete solutions and the convergence rate is comparable to (even faster than) the same

multigrid solver using first–order upwind differencing when the cell Reynolds number

is not very large. There are two main disadvantages for the SCGS relaxation: 1) with

second–order upwind differencing, it is difficult to obtain convergence for very large

Reynolds numbers (R ≥ 2000) and the convergence rate is sensitive to the relaxation

factor; 2) it fails for strongly anisotropic problems, e.g., when the aspect ratio of the

grid cells is not close to 1, so it is not suitable on non–uniform grids.
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In this paper, we give two line–wise extensions to the SCGS relaxation for the

second–order upwind scheme and we make some numerical comparisons on the conver-

gence rate of different relaxation methods.

2. Discretization

The dimensionless steady viscous incompressible Navier–Stokes equations in a 2D

domain Ω can be formulated as follows:
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where (u, v) is the velocity, p the pressure, R

the Reynolds number and (f1, f2) denotes the

external force.
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Fig. 1. Location of unknowns

We discretize Equation (1) on uniform staggered grids (MAC grid). The location of

different variables and the corresponding discrete equations on the cell (i, j) is shown

by Fig. 1 (in which the index (i, j) corresponds to the grid point (i∆x, j∆y)).

The convection terms in (1) are discretized using second–order upwind differencing.

For example, the term v
∂u

∂y
on the point (i∆x, (j + 1

2 )∆y) is discretized by:
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where the term vi,j+ 1
2
, which is not defined on the grid points, is computed by bilinear

interpolation:
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All other terms are discretized by standard central differencing. For details on the

discretization and treatment near the boundaries we refer to [5].

3. Relaxation Schemes


