L^{∞} CONVERGENCE OF QUASI-CONFORMING FINITE ELEMENTS FOR THE BIHARMONIC EQUATION*1)

Wang Ming
(Department of Mathematics, Peking University, Beijing, China)

Abstract

In this paper we consider the L^{∞} convergence for quasi-conforming finite elements solving the boundary value problems of the biharmonic equation and give the nearly optimal order L^{∞} estimates.

1. Introduction

The author has considered the L^{∞} error estimates of conforming and nonconforming finite elements for the biharmonic equation. This paper will discuss the case of quasiconforming finite elements.

Let Ω be a convex polygonal domain. For $p \in[1, \infty]$ and $m \geq 0$, let $W^{m, p}(\Omega)$ and $W_{0}^{m, p}(\Omega)$ be the usual Sobolev spaces, $\|\cdot\|_{m, p, \Omega}$ and $|\cdot|_{m, p, \Omega}$ be the Sobolev norm and semi-norm respectively. When $p=2$, denote them by $H^{m}(\Omega), H_{0}^{m}(\Omega),\|\cdot\|_{m, \Omega}$ and $|\cdot|_{m, \Omega}$ respectively. Let $H^{-m}(\Omega)$ be the dual space of $H_{0}^{m}(\Omega)$ with norm $\|\cdot\|_{-m, \Omega}$. $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ is called a multi-index with $|\alpha|=\alpha_{1}+\alpha_{2}$ if α_{1} and α_{2} are nonnegative integers. Define $0=(0,0), e_{1}=(1,0), e_{2}=(0,1)$. For a multi-index α, let

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}
$$

be the derivative operator.
Let M be the number of all multi-indexes α with $|\alpha| \leq m$. Define $L^{m, p}(\Omega)=$ $\left(L^{p}(\Omega)\right)^{M}$. For convenience, denote the components of $w \in L^{m, p}(\Omega)$ by $w^{\alpha},|\alpha| \leq m$. Then $L^{m, p}(\Omega)=\left\{w\left|w=\left(w^{\alpha}\right), w^{\alpha} \in L^{p}(\Omega),|\alpha| \leq m\right\}\right.$. For $w \in L^{m, p}(\Omega)$, define its norm $\|\cdot\|_{m, p, \Omega}$ and semi-norm $|\cdot|_{m, p, \Omega}$ as follows,

$$
\begin{equation*}
\|w\|_{m, p, \Omega}=\left(\sum_{|\alpha| \leq m} \int_{\Omega}\left|w^{\alpha}\right|^{p} d x d y\right)^{1 / p}, \quad|w|_{m, p, \Omega}=\left(\sum_{|\alpha|=m} \int_{\Omega}\left|w^{\alpha}\right|^{p} d x d y\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

[^0]when $p<\infty$, and
\[

$$
\begin{equation*}
\|w\|_{m, \infty, \Omega}=\max _{|\alpha| \leq m} \operatorname{esssup}_{(x, y) \in \Omega}\left|w^{\alpha}(x, y)\right|, \quad|w|_{m, \infty, \Omega}=\max _{|\alpha|=m}^{\operatorname{esssup}}\left|(x, y) \in \Omega, w^{\alpha}(x, y)\right| \tag{1.2}
\end{equation*}
$$

\]

when $p=\infty$. If $p=2,\|\cdot\|_{m, p, \Omega}$ and $|\cdot|_{m, p, \Omega}$ can be written as $\|\cdot\|_{m, \Omega}$ and $|\cdot|_{m, \Omega}$ respectively.

Sobolev space $W^{m, p}(\Omega)$ or its subspace, by correspondence $u \in W^{m, p}(\Omega) \rightarrow\left(D^{\alpha} u\right)$ $\in L^{m, p}(\Omega)$, is mapped to a subspace of $L^{m, p}(\Omega)$. Because the norm and semi-norm are invariant, it is also denoted by the usual notation.

For $h \in\left(0, h_{0}\right)$ with $h_{0} \in(0,1)$, let T_{h} be a subdivisions of Ω by triangles or rectangles. Let $h_{T}=\operatorname{diam} T$ and ρ_{T} the largest of the diameters of all circles contained in T. Assume that there exists a positive constant η, independent of h, such that $\eta h \leq \rho_{T}<h_{T} \leq h$ for all $T \in \mathrm{~T}_{h}$.

For $w \in L^{2}(\Omega)$ and $\left.w\right|_{T} \in H^{m}(T)$ for all $T \in \mathrm{~T}_{h}$, define

$$
\begin{equation*}
|w|_{m, h}=\left(\sum_{T \in \mathrm{~T}_{h}}|w|_{m, T}^{2}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

For $w \in L^{\infty}(\Omega)$ and $\left.w\right|_{T} \in W^{m, \infty}(T)$ for all $T \in \mathrm{~T}_{h}$, define

$$
\begin{equation*}
|w|_{m, \infty, h}=\max _{T \in \mathrm{~T}_{h}}|w|_{m, \infty, T} \tag{1.4}
\end{equation*}
$$

The remains of the paper is arranged as follows. In section 2 we give the L^{∞} estimates for 9-parameter quasi-conforming element for the biharmoic equation and its properties. In section 3 we present the proof of the L^{∞} estimate for the element. In section 4 we consider the case of other quasi-conforming plate elements.

2. The 9-Parameter Quasi-Conforming Finite Element

The homogeneous Dirichlet boundary value problem of the biharmonic equation is the following,

$$
\left\{\begin{array}{l}
\triangle^{2} u=f, \tag{2.1}\\
\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial N}\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $N=\left(N_{x}, N_{y}\right)$ is the unit normal of $\partial \Omega$.
It is known that for $\forall f \in H^{-1}(\Omega)$, problem (2.1) has unique solution $u \in H_{0}^{2}(\Omega) \cap$ $H^{3}(\Omega)$, such that

$$
\begin{equation*}
\|u\|_{3, \Omega} \leq C\|f\|_{-1, \Omega} \tag{2.2}
\end{equation*}
$$

with C a positive constant.

[^0]: * Received October 25, 1993.
 ${ }^{1)}$ The Project Supported by National Natural Science Foundation of China.

