L^{∞} CONVERGENCE OF QUASI-CONFORMING FINITE ELEMENTS FOR THE BIHARMONIC EQUATION^{*1}

Wang Ming

(Department of Mathematics, Peking University, Beijing, China)

Abstract

In this paper we consider the L^{∞} convergence for quasi-conforming finite elements solving the boundary value problems of the biharmonic equation and give the nearly optimal order L^{∞} estimates.

1. Introduction

The author has considered the L^{∞} error estimates of conforming and nonconforming finite elements for the biharmonic equation. This paper will discuss the case of quasiconforming finite elements.

Let Ω be a convex polygonal domain. For $p \in [1, \infty]$ and $m \geq 0$, let $W^{m,p}(\Omega)$ and $W_0^{m,p}(\Omega)$ be the usual Sobolev spaces, $\|\cdot\|_{m,p,\Omega}$ and $|\cdot|_{m,p,\Omega}$ be the Sobolev norm and semi-norm respectively. When p = 2, denote them by $H^m(\Omega)$, $H_0^m(\Omega)$, $\|\cdot\|_{m,\Omega}$ and $|\cdot|_{m,\Omega}$ respectively. Let $H^{-m}(\Omega)$ be the dual space of $H_0^m(\Omega)$ with norm $\|\cdot\|_{-m,\Omega}$. $\alpha = (\alpha_1, \alpha_2)$ is called a multi-index with $|\alpha| = \alpha_1 + \alpha_2$ if α_1 and α_2 are nonnegative integers. Define $0 = (0, 0), e_1 = (1, 0), e_2 = (0, 1)$. For a multi-index α , let

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x^{\alpha_1} \partial y^{\alpha_2}}$$

be the derivative operator.

Let M be the number of all multi-indexes α with $|\alpha| \leq m$. Define $L^{m,p}(\Omega) = (L^p(\Omega))^M$. For convenience, denote the components of $w \in L^{m,p}(\Omega)$ by $w^{\alpha}, |\alpha| \leq m$. Then $L^{m,p}(\Omega) = \{w|w = (w^{\alpha}), w^{\alpha} \in L^p(\Omega), |\alpha| \leq m\}$. For $w \in L^{m,p}(\Omega)$, define its norm $\|\cdot\|_{m,p,\Omega}$ and semi-norm $\|\cdot\|_{m,p,\Omega}$ as follows,

$$||w||_{m,p,\Omega} = \left(\sum_{|\alpha| \le m} \int_{\Omega} |w^{\alpha}|^{p} dx dy\right)^{1/p}, \quad |w|_{m,p,\Omega} = \left(\sum_{|\alpha| = m} \int_{\Omega} |w^{\alpha}|^{p} dx dy\right)^{1/p}, \quad (1.1)$$

^{*} Received October 25, 1993.

¹⁾ The Project Supported by National Natural Science Foundation of China.

when $p < \infty$, and

$$||w||_{m,\infty,\Omega} = \max_{|\alpha| \le m} \operatorname{esssup}_{(x,y)\in\Omega} |w^{\alpha}(x,y)|, \quad |w|_{m,\infty,\Omega} = \max_{|\alpha|=m} \operatorname{esssup}_{(x,y)\in\Omega} |w^{\alpha}(x,y)|, \quad (1.2)$$

when $p = \infty$. If p = 2, $\|\cdot\|_{m,p,\Omega}$ and $|\cdot|_{m,p,\Omega}$ can be written as $\|\cdot\|_{m,\Omega}$ and $|\cdot|_{m,\Omega}$ respectively.

Sobolev space $W^{m,p}(\Omega)$ or its subspace, by correspondence $u \in W^{m,p}(\Omega) \to (D^{\alpha}u) \in L^{m,p}(\Omega)$, is mapped to a subspace of $L^{m,p}(\Omega)$. Because the norm and semi-norm are invariant, it is also denoted by the usual notation.

For $h \in (0, h_0)$ with $h_0 \in (0, 1)$, let T_h be a subdivisions of Ω by triangles or rectangles. Let h_T =diam T and ρ_T the largest of the diameters of all circles contained in T. Assume that there exists a positive constant η , independent of h, such that $\eta h \leq \rho_T < h_T \leq h$ for all $T \in \mathsf{T}_h$.

For $w \in L^2(\Omega)$ and $w|_T \in H^m(T)$ for all $T \in \mathsf{T}_h$, define

$$|w|_{m,h} = \left(\sum_{T \in \mathsf{T}_h} |w|_{m,T}^2\right)^{1/2}.$$
(1.3)

For $w \in L^{\infty}(\Omega)$ and $w|_T \in W^{m,\infty}(T)$ for all $T \in \mathsf{T}_h$, define

$$|w|_{m,\infty,h} = \max_{T \in \mathsf{T}_h} |w|_{m,\infty,T} \quad . \tag{1.4}$$

The remains of the paper is arranged as follows. In section 2 we give the L^{∞} estimates for 9-parameter quasi-conforming element for the biharmoic equation and its properties. In section 3 we present the proof of the L^{∞} estimate for the element. In section 4 we consider the case of other quasi-conforming plate elements.

2. The 9-Parameter Quasi-Conforming Finite Element

The homogeneous Dirichlet boundary value problem of the biharmonic equation is the following,

$$\begin{cases} \Delta^2 u = f, & \text{in } \Omega\\ u|_{\partial\Omega} = \frac{\partial u}{\partial N}|_{\partial\Omega} = 0 \end{cases}$$
(2.1)

where $N = (N_x, N_y)$ is the unit normal of $\partial \Omega$.

It is known that for $\forall f \in H^{-1}(\Omega)$, problem (2.1) has unique solution $u \in H^2_0(\Omega) \cap H^3(\Omega)$, such that

$$||u||_{3,\Omega} \le C ||f||_{-1,\Omega},\tag{2.2}$$

with C a positive constant.