FINITE DIMENSIONAL APPROXIMATION OF BRANCHES OF SOLUTIONS OF NONLINEAR PROBLEMS NEAR A CUSP POINT*

MA FU-MING

(Institute of Mathematics of Jilin University, Changchun, China)

Abstract

This paper presents some results on finite dimensional approximation of branches of solutions of nonlinear problems near a cusp point. These results can be applied to numerical methods of solving nonlinear differential equations.

1. Introduction

Consider nonlinear problems of the form

$$F(\lambda,u)=0$$

where F is a sufficiently smooth function from $R \times V$ into V for some Banach space V. In [1]-[3], finite dimensional approximation of branches of solutions near a simple limit point and a simple bifurcation point were studied respectively. We will consider here the finite dimensional approximation of branches of solutions of problem (1.1) near a cusp point and obtain results similar to that of [3].

Section 2 is devoted to general analysis of the cusp point of branches of solutions of nonlinear problems. In Section 3 we discuss the finite dimensional approximation of branches of solutions near a cusp point of problem (1.1). In Section 4 we apply our results to the Galerkin approximations of nonlinear problems.

2. Local Analysis of the Continuous Problem Near a Cusp Point

Let V, W be real Banach spaces with the norm $\|\cdot\|_V$ and $\|\cdot\|_W$ respectively and G be a C^p mapping from $R \times V$ into $W(p \ge 4)$ and T be a linear compact operator from W into V. We set

$$F(\lambda, u) = u + TG(\lambda, u). \tag{2.1}$$

Received December 25, 1986.

We assume that $(\lambda_0, u_0) \in R \times V$ is a simple critical point of F in the sense that

- (i) $F^0 \equiv (\lambda_0, u_0) = 0$;
- (ii) $D_uF^0\equiv D_uF(\lambda_0,u_0)=I+TD_uG(\lambda_0,u_0)\in\mathcal{L}(V;V)$ is singular and -1 is an

eigenvalue of the compact operator $TD_uG(\lambda_0, u_0)$ with the algebraic multiplicity 1;

(iii)
$$D_{\lambda}F^{0} \equiv D_{\lambda}F(\lambda_{0}, u_{0}) \in \text{Range } (D_{u}F^{0}).$$

We want to solve the equation

$$F(\lambda, u) = 0 \tag{2.3}$$

in a neighborhood of the simple critical point (λ_0, u_0) .

As a consequence of (2.2) (ii) and the theory of linear operators; there exists $\varphi_0 \in V$ such that

$$D_u F^0 \cdot \varphi_0 = 0, \quad \|\varphi_0\|_V = 1,$$

$$V_1 \equiv \text{Ker}(D_u F^0) = R \cdot \varphi_0.$$
 (2.4)

We denote by V' the dual space of V and by $\langle \cdot, \cdot \rangle$ the duality pairing between the spaces V and V'. Then there exists $\varphi_0^* \in V'$ such that

$$(D_u F^0)^* \cdot \varphi_0^* = 0, \quad \langle \varphi_0, \varphi_0^* \rangle = 1,$$

$$V_2 \equiv \text{Range } (D_u F^0) = \{ v \in V; \langle v, \varphi_0^* \rangle = 0 \}.$$
(2.5)

Finally, we have

$$V = V_1 \oplus V_2$$

and $D_u F^0$ is an isomorphism of V_2 . We denote by $L = (D_u F^0|_{V_2})^{-1} \in \mathcal{L}(V_2; V_2)$ the inverse isomorphism of $D_u F^0|_{V_2}$.

Let us define the projection operator $Q: V \rightarrow V_2$ by

$$Qv = v - \langle v, \varphi_0^* \rangle \varphi_0, \quad \forall v \in V.$$
 (2.6)

Then Eq. (2.3) is equivalent to the system

$$QF(\lambda, u) = 0,$$
 (2.7)
 $(I-Q)F(\lambda, u) = 0.$

By the implicit function theorem, there exist two positive constants ξ_0 , α_0 and a unique C^p mapping $V: [-\xi_0, \xi_0] \times [-\alpha_0, \alpha_0] \to V_2$ such that

$$QF(\lambda_0 + \xi, u_0 + \alpha \varphi_0 + v(\xi, \alpha)) = 0,$$

$$v(0, 0) = 0.$$
(2.8)