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This paper presents some results on finite dimensional approximation of branches
of solutions of nonlinear problems near a cusp point. These results can be applied to
numerical methods of solving nonlinear differential equations.

1. Introduction

Consider nonlinear problems of the form
F(A\u)=0

where F' is a sufficiently smooth function from R x V into V for some Banach space V. In
[1)-{3], finite dimensional approximation of branches of solutions near a simple limit point
and a simple bifurcation point were studied respectively. We will consider here the finite

dimensional approximation of branches of solutions of problem (1.1) near a cusp point and

obtain results similar to that of [3|.
Section 2 is devoted to general analysis of the cusp point of branches of solutions of

nonlinear problems. In Section 3 we discuss the finite dimensional approximation of branches
of solutions near a cusp point of problem (1.1). In Section 4 we apply our results to the

Galerkin approximations of nonlinear problems.

2. Local Analysis of the Continuous Problem Near a Cusp Point

Let V,W be real Banach spaces with the norm || - [lv and | - ||lw respectively and G
be a C? mapping from R x V into W(p > 4) and T be a linear compact operator from W

mto V. We set
F(A,u)=u+ TG’(A,u]. (2.1]
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We assume that (Ao, us) e R x V s a simple critical point of F in the sense that
(i) F?= ()Xo, uo) = O;
(i) DyF° = D F(Ag,up) = I+ TD,G(Ao,u5) € L(V;V) is singular and —1 is an

eigenvalue of the compact operator 7’D, G()¢, tg) with the algebraic multiplicity 1;
(iii) Dy F° = Dy F(Xo,up) € Range (D, FO).
We want to solve the equation

F{A,u) =0 | (2.3)

in a neighborhood of the simple critical point (Ao, uo).
As a consequence of (2.2) (ii) and the theory of linear operators; there exists o € V

such that
DyF? -0 =0, |wolv =1,
(2.4)

Vi = Ker(D,F% = R . ;.
We denote by V' the dual space of V and by < -, > the duality p'a.iring between the spaces
V and V’. Then there exists 3 € V' such that

(DHFO)* w0 =0, <po,pp>=1,
(2.5)
Va = Range (D, F°)={veV;<v,ps >=0}.

Finally, we have
' V=Vea& Va

and D, F° is an isomorphism of V;. We denote by L = [J.'J,,,J"""’I,‘,,.m)‘1 € L(Vz;V2) the inverse
isomorphism of .l.'},mli'“:",‘,=r ; |
Let us define the projection operator Q: V — V; by

Qv = v — {v, v5) o, VeeV. (2.6)
Then Eq. (2.3) is equivalent to the system

QF(A u) =0,
- (2.7)

(I - Q)F(X, u)=0.

By the implicit function theorem, there exist two positive constants £3, ap and a
unique CP mapping V : [—£p, &] X [~ao, ao] — V3 such that

QF (Ao + &, up + agpg +'v(E, a)) =0,
(2.8)

v(0,0) = 0.



