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Abstract

The paper is devoted to the study and analysis of the mixed stiffness finite element method for the
Navior—Stokes equations, based on 2 formulation of velocity-pressure-stress deviatorics. The method
used low order Liagrange elements, and leads to optimal error order of convergence for velocity,
pressure, and stress deviatorics by means of the mesh-dependent norms defined in this paper. The
main advantage of the MEFEM is that the streamfunction can not only be employed to satisfy the
divergence constraint but stress deviatorics can also be oliminated at the olement level so that it is.
unnecessary to solve a larger algsbraic system containing stress multipliers, or to develop a spacial code:
for computing tho MSFE solutions of the Navier-Stokes equations because we can use the computing
codes used in solving the Navier—Stokes equations with the velocity—pressure formulation, or éven the
computing codes used in solving the problems of solid mechanics.

§ 1. Introduction

Let 2 be a bounded open subset of R*? with a sﬁﬂiﬁiéntly' gsmooth bounda.ry;
I'(=8Q). Then the Navier—Stokes equations governing the flow of the two-dimen-
sional steady incompressible viscous fluid can be written as- follows:

(uViuy—~vdu-+Vp=Ff, inf2, - (1.12)
Vey=0, inf;, ., - (1.1b)
_ (1.1c)

where wu=(u;, u;) are the yelocities of flow, pis pressure, f=(f1, fa) are body
forces, and »(>>0) is the kinematio viscosity coeflioient,

If the nonlinear convection terms in (1.1a) are cut out, then we obiain the
so—called Stokes equations: | | “ |

w=0, onl,

~pu+-Vp=f, in Q, | (1.2a)
 Veu=0, inf, (1..2b)
u=0, onl. (1.2¢)

Tt is well known that considerable efforts have been made by both engineors
and mathematicians concerning the construction of finite element solutions of the.
Stokes problem and the Navier—Stokes problem, ses, e.g., [8, 6—18, 17—18, and
98]. What is worth mentioning is Zhou’s paper, [23], which congiders a new
variational formulation of the MSFEM in [20] and [22] to aveid the trouble
encountered in solving a larger system of equations owing to the additional viscous

stress multiplier variables.
The purpose of this paper is to extend the results about the Stokes problem im
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ro8] to the case of the Navier—Stokes problem. By treating the nonlinear terms with
the upwind-diffusion scheme pregented in [T], we prove the existence and uniqueness
of the MSFE solutions of the Navier—Stokes problem, and obtain the optimal error
estimates for velooity pressure and siress by virtue of special mesh-dependent
norms. And IAP-estimates of velocity and pressure are also optimal. Moreover,
stress muliipliers can be eliminated at element Jevel. An important step in practical
computation is that velocity is first ealoulated in the divergencefree space, then
pressure is found by the velooity obtained. To the author's knowledge, with the
velocity—pressure—stress deviatorics formulation of the Navier-Stokes equations, the
optimal error estimates in this paper are obtained for the first time.

An ontline of the paper is as follows. The remaining pars of the present section
is to desoribe some definitions and symbols. Section 2 is devoted to the description of’
the MSFEM for the Navier-Stokes equations. In Section 3, we discuss the construction
of the FE subspaces and prove their prﬂpertles Section 4 deals with the abstract
results of the saddle—point problem. We get, in Seotions 5 and 6, the error estimates
of the solutions of the MSFEM for the. NH-VZ[EI‘*’S'I}O]IES prﬂblam in the sense of the.
mesh—dependent norms and I*-norm.

Throughout this paper, we use the Sobolev space
H’"(’Q)={@GLE(9), om0 7300). Ja| —as aﬂ-gm}
orT oxd*
equipped with the following norm and semi-norm:

folma= { > el e}, .

Tee| < me

|| . ﬂ={ E [_3:‘”]0-&}”2

whore m (>>0) i8 an integer. We denﬂte h}r H/2(I™) the trace space which 00]1913133'
of fanoctions defined on thé boundary I'. Moreover, some special spaces will be
defined when they appear. As 1o the details of Sobolev spaces, see [1, 8], and.
[13—14].

For convenience, we do not make distinotion between the vestor—valued function.
and the scalar—valued function. The standard summation convention is empolyed.
We denote by n and ¢ the unit normal and tangeni vector on some boundary
respectively. And ¢ stands for the generic constant unless partioular explanation is.

given.

§ 2. The MSF E Formulation

To facilitate the Iana.lys'is below, we introduce the following relations:
=2,
8 (v) ={8(¥) h1<i, <
8 (0) = (Qw;+0v) /2, 1<, j<2.
Then tha Navwr—ﬁtnkes equations (1.1) can be rewritlen as

0‘=1.os(u), mﬂ (2,1a)

Veu=0, in Q, | f (2.1b):

(u Vu~Veo+Vp=f, in Q, s w - - (2.10)
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