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THE SECOND-ORDER FLUID IN CELL (FLIC)
METHOD FOR THE ONE-DIMENSIONAL
UNSTEADY. COMPRESSIBLE FLOW
PROBLEMS*
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Ahstract
' E
In this paper we suggeat a aamnd-ﬂr&er ﬂmd in cell (]:"‘LIG') method for the one-dimensional
unsteady compreesible flow problems. The Numerical result obtsined by the present ‘method is
-+ compared with the cne obtained with fhe ongmail EDIU method and the exact sclution for a shock
tabe problem.

Introduction

, -

The fluid in cell (FLIC) method™ is one of the most usefal difference methods
in the computational fluid dynamics. However, ag it has only firsi-order accuracy,
it cannot give a satisfactory numerioal result in:some ceses. This paper suggests a
second-order fluid in cell (FLIC) method for the one-dimensional unsteady
compressible flow problems. The result obtained by the present method is compared
with the one obtained with the original FLIC method and the exact solution for the
shook tube problem. The comparison demonﬂtra.tes that the second-order FLIC
method 19 satisfectory.

Second-order Fluid in Cell Method

The eqguations of one-dimensional uns'beady compremble fluid flow majr be
written in the following forms: -
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whera p is the denmty, ¢ is the velomty, p is the premure and e is the internal energy
per unit mass, Amume the gas is poljfmpm in that ease equation of state is
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The seoond—order FLIO method caloulates the quantities at time (n-- D 4i in
terms of those at time ndé where n is a number of iime step. Within one fime- step,
the new quantities are computed in fwo . phases: First, intermediate valnes are
computed for the velooities and specific internal energy t4aking into account the
offeots of acoeleration caused by pressure gradients. . Saﬁond transport offects are
computed.

Phase 1. By the following 'liWO—B'lin method }ntermedmta values % and e, are

obtained:
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 Phase 2. Transport effocts are now computed. We rega.rd the distributfions of
intermedlate_values of pi, U, € in each mesh (#;_1/2, %is1se) 88 linear functions, i.e.
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In orderto presém the* mbnotonimty of the nhmeﬂ&dl‘*ﬁ?}flﬁon ; the fullowing
va.n Leer monotonicity a=.v‘]gt:):u‘s]m:n"“‘1 is wsed: s g S



