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Abstract. This paper develops Runge-Kutta PK-based central discontinuous Galerkin
(CDG) methods with WENO limiter for the one- and two-dimensional special rela-
tivistic hydrodynamical (RHD) equations, K = 1,2,3. Different from the non-central
DG methods, the Runge-Kutta CDG methods have to find two approximate solutions
defined on mutually dual meshes. For each mesh, the CDG approximate solutions on
its dual mesh are used to calculate the flux values in the cell and on the cell boundary so
that the approximate solutions on mutually dual meshes are coupled with each other,
and the use of numerical flux will be avoided. The WENO limiter is adaptively im-
plemented via two steps: the “troubled” cells are first identified by using a modified
TVB minmod function, and then the WENO technique is used to locally reconstruct
new polynomials of degree (2K+1) replacing the CDG solutions inside the “troubled”
cells by the cell average values of the CDG solutions in the neighboring cells as well
as the original cell averages of the “troubled” cells. Because the WENO limiter is only
employed for finite “troubled” cells, the computational cost can be as little as possible.
The accuracy of the CDG without the numerical dissipation is analyzed and calcula-
tion of the flux integrals over the cells is also addressed. Several test problems in one
and two dimensions are solved by using our Runge-Kutta CDG methods with WENO
limiter. The computations demonstrate that our methods are stable, accurate, and ro-
bust in solving complex RHD problems.
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1 Introduction

Relativistic fluid widely appears in nuclear physics, astrophysics, plasma physics, and
other fields. For example, in the physical phenomena such as the formation of neutron
stars and black holes and the high-speed jet, the local fluid velocity may be close to the
speed of light, at this time the relativistic effect can not be neglected and the relativistic
fluid dynamics (RHD) is needed. Because the RHD equations are more complicated, their
theoretical analysis is impractical so that numerical simulation has become a primary and
powerful way to study and understand the physical mechanisms in the RHDs.

The pioneering numerical work may date back to the finite difference code via arti-
ficial viscosity for the spherically symmetric general RHD equations in the Lagrangian
coordinate [32, 33]. Wilson first attempted to solve multi-dimensional RHD equations in
the Eulerian coordinate by using the finite difference method with the artificial viscosity
technique [47]. Since 1990s, the numerical study of the RHDs began to attract consider-
able attention, and various modern shock-capturing methods with an exact or approx-
imate Riemann solver have been developed for the RHD equations, the readers are re-
ferred to the early review articles [31,46]. Some examples on existing methods, which are
extensions of Godunov type shock capturing methods, are the upwind schemes based
on local linearization [16, 17], the two shock approximation solvers [1, 12, 35], flux-vector
splitting scheme [14], HLL (Harten-Lax-van Leer) schemes [15, 41], HLLC (Harten-Lax-
van Leer-Contact) scheme [34], non-oscillatory essentially (ENO) schemes [13, 58], and
kinetic schemes [21, 55] and so on. Recently the second author and his co-workers de-
veloped adaptive moving mesh method [18], derived the second-order accurate gener-
alized Riemann problem (GRP) methods for the one- and two-dimensional RHD equa-
tions [56,57], and the finite volume local evolution Galerkin scheme for two-dimensional
RHD equations [48]. Later, the third-order accurate GRP scheme in [54] was extended
to the one-dimensional RHD equations [53], and the direct Eulerian GRP scheme was
developed for the spherically symmetric general relativistic hydrodynamics [49]. The
physical-constraints-preserving (PCP) schemes were also studied for the special RHD
equations recently. The high-order accurate PCP finite difference weighted essentially
non-oscillatory (WENO) schemes and discontinuous Galerkin (DG) methods were pro-
posed in [36, 50, 52]. Moreover, the set of admissible states and the PCP schemes of the
ideal relativistic magnetohydrodynamics was studied for the first time in [51], where the
importance of divergence-free fields was revealed in achieving PCP methods especially.

The DG methods have been rapidly developed in recent decades and become a kind
of important methods in computational fluid dynamics. They are easy to achieve high
order accuracy, suitable for parallel computing, and adapt to complex domain boundary.
The DG method was first developed by Reed and Hill [38] to solve steady-state scalar
linear hyperbolic equation but did not attract people’s attention. A major development
of the DG method was carried out in a series of papers [4, 6–8, 10], where the DG spatial
approximation was combined with explicit Runge-Kutta time discretization to develop
Runge-Kutta DG (RKDG) methods and a general framework of DG methods was estab-


