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Abstract. This paper is devoted to an extension of the finite-energy condition for ex-
tended Runge-Kutta-Nyström (ERKN) integrators and applications to nonlinear wave
equations. We begin with an error analysis for the integrators for multi-frequency
highly oscillatory systems y′′+My= f (y), where M is positive semi-definite, ‖M‖≫
‖ ∂ f

∂y ‖, and ‖M‖≫ 1. The highly oscillatory system is due to the semi-discretisation of

conservative, or dissipative, nonlinear wave equations. The structure of such a matrix
M and initial conditions are based on particular spatial discretisations. Similarly to
the error analysis for Gaustchi-type methods of order two, where a finite-energy con-
dition bounding amplitudes of high oscillations is satisfied by the solution, a finite-
energy condition for the semi-discretisation of nonlinear wave equations is introduced
and analysed. These ensure that the error bound of ERKN methods is independent
of ‖M‖. Since stepsizes are not restricted by frequencies of M, large stepsizes can be
employed by our ERKN integrators of arbitrary high order. Numerical experiments
provided in this paper have demonstrated that our results are truly promising, and
consistent with our analysis and prediction.
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1 Motivation

It is known that the study of numerical methods for solving highly oscillatory problems
has become increasingly important in recent decades. A major source of these problems
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is from the spatial discretisation of nonlinear wave equations, such as the Klein-Gordon
equation which has received a great deal of attention in both its numerical and analytical
aspects. In this paper, we pay attention to an essential extension of the finite-energy
condition for ERKN integrators and applications to nonlinear wave equations.

We commence with a system of multi-frequency highly oscillatory second-order dif-
ferential equations {

y′′+My= f (y), t∈ [t0,T],

y(t0)=y0, y′(t0)=y′0,
(1.1)

where M∈R
d×d is a positive semi-definite matrix (not necessarily diagonal nor symmet-

ric, in general), ‖M‖≫‖ ∂ f
∂y ‖, and ‖M‖≫1. This type of problem occurs in many aspects

of science and engineering, among which the spatial discretisation of nonlinear wave
equations by finite difference methods or spectral methods provides a large number of
practical applications. In dealing with these oscillatory problems, the adapted Runge-
Kutta-Nyström (ARKN) methods and ERKN integrators were respectively proposed by
Franco [4] and Yang et. al [42] as developments of classical Runge-Kutta-Nyström (RKN)
methods. As shown in the literature (see e.g. [4, 6, 22, 40]), based on the internal stages of
traditional RKN methods, the ARKN methods adopt a new form of updates given by

yn+1=φ0(V)yn+hφ1(V)y′n+h2
s

∑
i=1

B̄i(V) f (Yi),

y′n+1=−hMφ1(V)yn+φ0(V)y′n+h
s

∑
i=1

Bi(V) f (Yi),

where φ0, φ1, B̄i and Bi are matrix-valued functions, whereas, totally differently from
the ARKN methods, in light of the variation-of-constants formula for (1.1), the ERKN
methods not only adopt a new form of updates, but also adopt a new form of internal
stages given by

Yi =φ0(C
2
i V)yn+Cihφ1(C

2
i V)y′n+h2

s

∑
j=1

Aij(V) f (Yj),

to achieve a high level of harmony with the oscillatory structure of the problem (1.1). The
well-known examples of explicit ERKN integrators are Gautschi-type methods of order
two [7–11, 13]. As we will show by (2.10) in Section 2, the Gautschi-type method can
be displayed by a Butcher tableau, which is just in the form of ERKN methods. From
this observation, ERKN integrators also can be thought of as generalized Gautschi-type
methods.

Another type of numerical method for solving the oscillatory problem is the expo-
nentially (or functionally) fitted methods, such as the exponentially fitted Runge-Kutta
(EFRK) method [27], the exponentially fitted Runge-Kutta-Nyström method (EFRKN)
(see e.g. [5]) and the functionally-fitted energy-preserving method [19]. As stated in the


