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Abstract. In this work, we introduce an IMEX discontinuous Galerkin solver for the
weakly compressible isentropic Euler equations. The splitting needed for the IMEX
temporal integration is based on the recently introduced reference solution splitting [32,
52], which makes use of the incompressible solution. We show that the overall method is
asymptotic preserving. Numerical results show the performance of the algorithm which
is stable under a convective CFL condition and does not show any order degradation.
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1 Introduction

In this work, we consider the (weakly-)compressible isentropic Euler equations [2, 59] in
dimensionless form,

ρt+∇·(ρu)=0,

(ρu)t+∇·(ρu⊗u)+
1

ε2
∇p=0.

(1.1)

The wave speeds in normal direction n of this (assumed two-dimensional) problem are

λ1=u·n and λ2,3=u·n±
c

ε
, (1.2)

which means that there is a convective and two acoustic waves. In what follows, we as-
sume that the reference Mach number ε is small, i.e., ε≪1, and all the other quantities are
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O(1), which physically means that the solution is a small disturbance of the incompress-
ible solution. Indeed, it can be shown that under suitable requirements on initial and
boundary data (“well-preparedness”), there is convergence of density and momentum
(ρ,ρu) towards its incompressible counterpart as ε→0, see [35, 51, 61] and the references
therein. Furthermore, it is obvious that this problem constitutes a singularly perturbed
equation in ε, as the equations change type in the limit.

Due to the change of type as ε → 0, the equations get extremely stiff and therefore
it is highly non-trivial to design efficient and stable algorithms. Explicit-in-time solving
techniques have the drawback that they lead to a CFL condition in which the time step
size ∆t must be proportional to ε∆x, where ∆x is a measure for the spatial grid size. If it is
not the goal to accurately resolve all the features, but only to resolve the convective part
of the flow, this condition is extremely restrictive, and a so called convective CFL condition

∆t.
∆x

‖u‖
(1.3)

is preferable. Fully implicit-in-time methods, on the other hand, which are stable under
such a CFL condition, tend to add too much spurious diffusion [37].

In the past few years, so called IMEX (implicit-explicit) splitting schemes got more
and more popular for solving compressible flow problems, especially for low Mach num-
bers, see e.g. [9, 10, 19, 20, 24, 26, 36, 39, 41, 46, 60] and the references therein. Optimally,
such a scheme should be designed in a way that slow waves are handled with an ex-
plicit (thus efficient) and fast waves are handled with an implicit (thus unconditionally
stable) method. Of course such a strict splitting of waves is only possible in the linear
one-dimensional case [53], and therefore, a suitable splitting for the nonlinear multidi-
mensional case has to be defined very carefully.

Over the past few years, many famous splittings for the Euler equations at low Mach
number have been designed, beginning by the ground-breaking work of Klein [36]. For
a non-exhaustive list, we refer to [9, 20, 26] and the references therein. However, many of
those splittings have their shortcomings. It has been reported [63] that Klein’s splitting
seems to be unstable in some instances. (Which does not include Klein’s original algo-
rithm as it is based on a semi discrete decoupling of the pressure.) Furthermore, all of the
mentioned splittings need a physical intuition and are not directly extendable to other
singularly perturbed differential equations.

To partly overcome these shortcomings, we have over the past few years developed
a new type of splitting that is based on the ε=0 (“incompressible”) solution of the prob-
lem. The splitting, termed RS-IMEX (see Section 3), is generic in the sense that it can in
principle be applied to any type of singularly perturbed equation, including singularly
perturbed ODEs [52] and the isentropic Euler equations [32]. Related ideas have already
been published earlier, for the shallow water equations in [9,23] and for kinetic equations
in [22], a stability analysis of the splitting has been done in [63] and [62].

In [52], we have applied the splitting idea to singularly perturbed ordinary differ-
ential equations with high-order IMEX discretizations, namely IMEX linear multistep


