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Abstract. We propose a novel first-order non-convex model for the fusion of infrared

and visible images. It maintains thermal radiation information by ensuring that the
fused image has similar pixel intensities as the infrared image, and it preserves the

appearance information, including the edges and texture of the source images, by
enforcing similar gray gradients and pixel intensities as the visible image. Our model

could effectively reduce the staircase effect and enhance the preservation of sharp

edges. The maximum-minimum principle of the model with Neumann boundary
condition is discussed and the existence of a minimizer of our model in W 1,2(Ω) is

also proved. We employ the augmented Lagrangian method (ALM) to design a fast

algorithm to minimize the proposed model and establish the convergence analysis
of the proposed algorithm. Numerical experiments are conducted to showcase the

distinctive features of the model and to provide a comparison with other image
fusion techniques.

AMS subject classifications: 65M32, 94A08, 65K10
Key words: Image fusion, variational model, augmented Lagrangian methods.

1. Introduction

Image fusion refers to the process of acquiring the same scene from multiple source

channels and integrating complementary multi-focus, multi-modal, multi-temporal,

and/or multi-viewpoint images into a new image. This enhances its suitability for

human or machine perception compared to the individual source images. Image fusion

techniques can be classified into five categories: multi-view image fusion, multi-modal
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image fusion, multi-temporal image fusion, multi-focus image fusion, and image fusion

for image restoration. Infrared and visible image fusion, as a crucial and indispensable

branch in the field of image fusion, falls under the category of multi-modal image fu-

sion. It holds significant significance in night vision technology, security monitoring and

image dehazing. For example, Zhu et al. [55] proposed a novel fast single image de-

hazing algorithm based on artificial multiexposure image fusion, which first combines

the global and local details of the gamma-corrected images by a pixelwise weight com-

putation, and then balances both image luminance and color saturation, finally can

obtain high-visibility images by the effective and efficient mitigation of adverse haze

effects. Image fusion can be also performed at pixel, feature, and symbol levels [25].

Infrared and visible image fusion is categorized under pixel-level image fusion. Prior

to pixel-level fusion, it is essential to perform multi-sensor image registration. In this

paper, we assume that all source images have been registered.

Over the past few decades, several techniques have been proposed for pixel-level

fusion. These include the Laplacian pyramid (LP) [5,41,43], the discrete wavelet trans-

form (DWT) [11], the dual-tree complex wavelet transform (DTCWT) [20, 21], the

curvelet transform (CVT) [16, 33], the non-subsampled contourlet transform (NSCT)

theory [13,14], the multi-resolution singular value decomposition (MSVD) [32], guid-

ed filtering fusion (GFF) [24], autoencoder-based approaches [15], and other tech-

niques [38]. Recently, deep learning-based fusion methods have also been devel-

oped, including the DenseFuse method [22], the RFN-Nest method [23], the SDNet

method [49], the SeAFusion method [40], image fusion based on proportional main-

tenance of gradient and intensity (PMGI) [50], image fusion based on convolutional

neural network (IFCNN) [17, 51], and fusion method based on generative adversarial

networks (FusionGAN) [26].

In 2016, Ma et al. [25, 27] formulated the problem of fusing infrared and visible

images by minimizing the following objective function:

F (s) =
1

2
‖s− u‖22 + λ‖∇s−∇v‖1,

where the first term constrains the fused image s to have similar pixel intensities with

the infrared image u, the second term requires that the fused image s and the visible

image v have similar gradients, and λ is a positive parameter controlling the trade-off

between the two terms.

Notice that in the above functional, the second term uses the total variation, which

could help s keep the edge locations as v. However, as discussed in [2,30,35], this total

variation based regularizer could give rise to the staircase effect and the loss of image

contrast. To remedy these unfavorable features, especially for the staircase effect, many

higher-order variational models have been developed in the literature. These models

employ different regularizers like total generalized variation, Euler’s elastica, nonlinear

fourth-order diffusive term, and second-order derivatives [4, 7, 39, 47]. Even though

these higher-order models have proven effective for reducing the staircase effect, these

higher-order models are intractable both analytically and numerically. To avoid the use
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of higher-order derivatives, an interesting approach is to modify the potential function

of the regularizer [42, 52]. This involves applying the Lp-norm of the image gradi-

ent with p > 1 for regions with relatively small image gradients, while imposing the

original total variation on regions with relatively large image gradients. This modified

regularizer successfully suppresses the staircase effect. This type of regularizer can be

traced back to Huber [18] and is widely used in the context of robust statistics. The

potential function used in the Huber model [18] is defined as follows:

φa(x) =







1

2a
x2, |x| ≤ a,

|x| −
1

2
a, |x| > a,

where a > 0 is a parameter. It has also been extensively studied in image processing by

Mila Nikolova and her collaborators [34]. Although the Huber model can effectively

eliminate the staircase effect, it does not address the issue of blurred boundaries. In

2021, Zhu [53] proposed a novel first-order variational model for image restoration,

defined by the following functional:

E(u) = λ

∫

Ω
φa(|∇u|) +

λ

2

∫

Ω
(f −K ∗ u)2,

where K represents a blurring operator, the new potential function φa reads

φa(x) =







1

2a
x2, |x| ≤ a,

a ln |x|+
a

2
− a ln a, |x| > a,

(1.1)

and a > 0 is a parameter. The aim was to avoid the staircase effect while preserving

image contrasts. Specifically, this regularizer has a lower growth rate than total vari-

ation (or even any power function |x|r with r > 0) for regions with relatively large

image gradients to maintain image contrast, while imposing the L2-norm of the gradi-

ent for regions with relatively small image gradients to reduce the staircase effect. The

experiments in [53] demonstrated that this model efficiently removes noise while pre-

serving image contrast and suppressing the staircase effect. Importantly, when applied

to deblurring problems, this model generates deblurred images with cleaner boundaries

than the well-known ROF model [36].

However, due to the non-convexity of the functional E(u), the existence of its min-

imizer is still missing. In this paper, we propose modifying the potential function φa by

adding a quadratic function with a small coefficient to overcome the above existence

issue, while maintaining the specific features of the original regularizer. With this new

regularizer, we develop a novel first-order variational model for the infrared and visible

image fuse problem.

In the literature, numerous fast algorithms have been introduced for total variation-

based models [29,36]. These include the primal-dual method [8], Chambolle’s method

[6], the split Bregman method [35], the augmented Lagrangian method (ALM) [9,46,
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54], alternating direction method of multipliers (ADMM) [44], and inertial proximal

alternating direction method of multipliers (IPADMM) [10]. In our work, to minimize

our proposed functional, we plan to develop an ALM that transforms it into the search

for a saddle point of an augmented Lagrangian functional. This can be accomplished

by iteratively and alternately minimizing several comparatively simpler functionals.

Typically, these resulting functionals either have closed-form solutions or can be solved

efficiently using fast solvers, such as fast Fourier Transforms (FFTs).

As a summary, the main contribution of this paper lies in the following three aspects:

• We propose a novel first-order non-convex model for the fusion of infrared and

visible images, which could effectively eliminate noise, reduce the staircase effect

and preserve sharp edges.

• The existence of a minimizer of our non-convex model in W 1,2(Ω) is proved.

• The maximum-minimum principle of our model with Neumann boundary condi-

tion is discussed.

The organization of this paper is as follows. In Section 2, we first present a novel

first-order model for image fusion. We give the proof of the existence of the minimizer

of our model in W 1,2(Ω). In Section 3, we provide detailed explanations of the de-

velopment of the ALM algorithm. In Section 4, we present the results of numerical

experiments conducted to validate the features of the proposed model, particularly the

reduction of the staircase effect and the preservation of image contrast. Finally, the

conclusion is given in Section 5.

2. A first-order image fusion model

Let u, v, and s denote the infrared, visible and fused images respectively. Our objec-

tive is to combine the signal information from the infrared and visible images to create

a new image. The fused image should encompass the detailed signals such as textures

and edges from the visible image, as well as include the thermal radiation informa-

tion that is absent in the visible image due to lighting conditions but captured by the

infrared image.

Table 1: The meaning of the variables.

Variable Meaning

u the infrared image

v the visible image

s the fused image

q q = s− v, the grayscale difference between the fused image and the visible image

p p = ∇q, the gradient of q
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In general, since the thermal radiation is characterized by pixel intensities, it is

expected that the pixel intensities of s and u are similar. To quantify the difference, we

introduce the following empirical error:

E1(s) =
1

2

∫

Ω
(s− u)2dx.

According to the human visual system, rich edge and texture feature information is

observed when the spatial frequency is large. The spatial frequency is determined

based on the distribution of gradients and pixel intensities in the image. Consequently,

the essential features such as edges and textures in image v are represented by the gray

gradients and pixel intensities. Therefore, in order to utilize the detailed appearance

information in image v, it is necessary for the gray gradients and pixel intensities of

images s and v to be close. In this work, we propose the following functional to quantify

the difference between the two images s and v:

E2(s) =

∫

Ω

[
φa(|∇s−∇v|) + η|∇s−∇v|2

]
dx+

λ

2

∫

Ω
(s− v)2dx,

where λ, η are positive parameters, and the potential function φa(x) is defined as (1.1).

This choice of regularizer could suppress the staircase effect effectively and largely

preserve image contrast. More importantly, as shown latter, the term η|∇s − ∇v|2

ensures the existence of solutions.

By combining the above two functionals E1(s) and E2(s), we propose the following

first-order variational model for the image fusion problem:

s∗ = argmin
s

E(s) = argmin
s

{
E2(s) + αE1(s)

}
,

where

E(s) =

∫

Ω

[
φa(|∇(s− v)|) + η|∇(s− v)|2

]
dx+

λ

2

∫

Ω
(s−v)2dx+

α

2

∫

Ω
(s−u)2dx. (2.1)

Note that this model incorporates information from both the given infrared image u
and the visible image v. λ, α > 0 are tuning parameters that balance the regularization

term and the fitting terms. The larger λ (or α) is, the more information in the visible

image v (or the infrared image u) will be contained in the fused image s. η is a small

positive parameter and it is used to ensure the existence of a minimizer of our model

in W 1,2(Ω). η could be arbitrarily small, and the smaller it is, the better the image

contrast will be preserved.

In our model, the parameter a > 0 is used to define regions with small or large

magnitude of the gradient of the difference s−v. On one hand, in the region with |∇(s−
v)| ≤ a, Tikhonov regularization is employed to impose a higher level of regularity on

s − v compared to total variation, thereby reducing the staircase effect. On the other

hand, in the region where |∇(s − v)| > a, the regularizer has a lower growth rate
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Figure 1: The graphs of different potential functions.

than total variation, which weakens the competition of the regularization term with

the fitting term and thus helps to maintain image contrast.

In Fig. 1, we present the graphs of potential functions for the total variation regu-

larization term, Tikhonov regularization term, Huber regularization term, the regular-

ization term in [53] with a = 2, and our regularization term with a = 2, η = 0.01.

To illustrate the impact of the new regularizer on the image fusion results, we com-

pare the performance of our model with models that use total variation regularization

and Huber regularization in Section 4. For convenience, we will refer to these corre-

sponding models as the TV model and the Huber model, respectively.

In fact, if we define q = s− v, the problem (2.1) can be reformulated as follows:

q∗ = argmin
q

E(q), (2.2)

where

E(q) =

∫

Ω

[
φa(|∇q|) + η|∇q|2

]
dx+

λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx. (2.3)

Once we find the optimal solution q∗, the fused image s∗ can be determined using the

relation s∗ = q∗ + v.

It is often seen that some hard constraints are imposed on the objective functional,

such as the characteristic (indication) function IC(·) [1], defined as IC(u) = 0 if u ∈ C

and IC(u) = ∞ if u /∈ C, where C is a given set. If the solution satisfies the maximum-

minimum principle, there is no need to add hard constraints to the objective functional.

Next, we discuss the maximum-minimum principle to the problem (2.5) by utilizing

Stampacchia’s truncation method [19,45].

The Gateaux derivative of E at q is

E′(q) = −div

(

φ′a(|∇q|)
∇q

|∇q|
+ 2η∇q

)

+ λq + α
(
q − (u− v)

)
. (2.4)
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Let us consider the following nonlinear parabolic problem in 2D case:







∂q

∂t
= div

(

φ′a(|∇q|)
∇q

|∇q|
+ 2η∇q

)

− λq − α
(
q − (u− v)

)
in Ω× (0,∞),

∂q

∂~n
= 0 on ∂Ω× (0,∞),

q =
α

λ+ α
(u− v) on Ω× {t = 0}.

(2.5)

Theorem 2.1. Consider the problem (2.5) with any bounded measurable function u and

v, then the solution q of (2.5) verifies

α

λ+ α
inf
x∈Ω

{u(x) − v(x)} ≤ q(x, t) ≤
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
on Ω× (0,∞).

Proof. For the problem (2.5), we only prove the maximum principle. The minimum

principle follows from the reverse contrast invariance and the maximum principle when

applied to the initial data −u and −v.

Let G ∈ C1(R) be a function with G(l) = 0 on (−∞, 0] and 0 < G′(l) ≤ C on (0,∞)
for some constant C. Now we define

H(l) :=

∫ l

0
G(s)ds, l ∈ R,

J(t) :=

∫

Ω
H

(

q(x, t)−
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)

dx, t ∈ [0,∞).

By the Cauchy-Schwarz inequality, we have

∫

Ω

∣
∣
∣
∣
G

(

q(x, t)−
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)
∂q

∂t
(x, t)

∣
∣
∣
∣
dx

≤ C

∥
∥
∥
∥
q(t)−

α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
∥
∥
∥
∥
L2(Ω)

∥
∥
∥
∥

∂q

∂t
(t)

∥
∥
∥
∥
L2(Ω)

,

and

∂J

∂t
=

∫

Ω
G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)
∂q

∂t
dx

=

∫

Ω
G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)

div

(

φ′a(|∇q|)
∇q

|∇q|
+ 2η∇q

)

dx

+

∫

Ω
G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)
(
α(u − v)− (λ+ α)q

)
dx

=

∫

∂Ω
G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
) 〈

φ′a(|∇q|)
∇q

|∇q|
+ 2η∇q, n

〉

︸ ︷︷ ︸

=0

dS
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−

∫

Ω
G′

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)

︸ ︷︷ ︸

≥0

〈

∇q, φ′a(|∇q|)
∇q

|∇q|
+ 2η∇q

〉

︸ ︷︷ ︸

≥0

dx

+

∫

Ω
⋂
{q− α

λ+α
sup
x∈Ω

{u(x)−v(x)}≤0}

(
α(u − v)− (λ+ α)q

)

×G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)

︸ ︷︷ ︸

=0

dx

+

∫

Ω
⋂
{q− α

λ+α
sup
x∈Ω

{u(x)−v(x)}>0}

(
α(u − v)− (λ+ α)q

)

︸ ︷︷ ︸

≤0

×G

(

q −
α

λ+ α
sup
x∈Ω

{
u(x)− v(x)

}
)

︸ ︷︷ ︸

≥0

dx ≤ 0.

We also have G(l) ≤ Cl, then H(l) ≤ Cl2/2. Therefore,

0 ≤ J(t) ≤

∫

Ω
H

(

q(x, t)−
α

λ+ α

(
u(x)− v(x)

)
)

dx

≤
C

2

∥
∥
∥
∥
q(t)−

α

λ+ α

(
u(x)− v(x)

)
∥
∥
∥
∥

2

L2(Ω)

.

Since q ∈ C([0, T ];L2(Ω)), we have J(0) = 0, which proves the continuity of J(t) in 0.

According to J ∈ C([0,∞)), J(0) = 0, J(t) ≥ 0 on [0,∞) and ∂J/∂t ≤ 0, we get J ≡ 0
on [0,∞). Hence, q(x, t) ≤ (α/(λ + α))supx∈Ω{u(x) − v(x)} on Ω× (0,∞).

Corollary 2.1. Consider the problem (2.5) with any bounded measurable function u and

v, and

ess inf
x∈Ω

u(x) = 0, ess sup
x∈Ω

u(x) = 1, ess inf
x∈Ω

v(x) = 0, ess sup
x∈Ω

v(x) = 1.

Then the solution q of (2.5) verifies

−
α

λ+ α
≤ q(x, t) ≤

α

λ+ α
on Ω× (0,∞).

We first study the existence of the minimizer of the functional E(q) in one dimen-

sional with Ω = [l1, l2]. At this time, we can deduce that when η > 0 is sufficient small,

the minimizer q of E(q) is allowed to have large jumps, thereby maintaining image

contrast.

Lemma 2.1. Consider the function ψ(x) = φa(x)+ ηx2 over R, where φa(x) is defined as

in (1.1), and η > 0. If η ≥ 1/(2a), then ψ(x) is convex on R.
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Proof. Substituting the expression of φa(x) into the function ψ(x), we get

ψ(x) =







1

2a
x2 + ηx2, |x| ≤ a,

a ln |x|+
a

2
− a ln a+ ηx2, |x| > a.

Its second derivative is

ψ′′(x) =







1

a
+ 2η, |x| ≤ a,

−
a

x2
+ 2η, |x| > a.

So, if η ≥ 1/(2a), then ψ′′(x) ≥ 0. Since ψ(x) is C1(R) and ψ′(x) is non-decreasing on

R, ψ(x) is convex on R.

As mentioned before, the parameter a is a cut-off point that divides the image into

two regions, over which different regularization terms are imposed. If the gray value

of the visible image and infrared image falls within the interval [0, 1] and the mesh size

is chosen as h = 0.01, then the range of the grayscale gradient will be [0, 100], and the

fusion effect is best when a is taken as 2. The more interesting and important case is

when the parameters η and a satisfy the inequality 0 < η < 1/(2a), since it allows sharp

transitions of q(x), where q(x) is a minimizer of E(q).

Theorem 2.2. If u(x) and v(x) are the simple bounded measurable functions, and η > 0,

then E(q) has a minimizer in H1(Ω).

Proof. Let ψη(|q
′|) = φa(|q

′|) + η(q′)2, and ψ∗∗
η (|q′|) be the lower convex envelope of

ψη(|q
′|), just like Fig. 2. If η ≥ 1/(2a), then ψ∗∗

η (|q′|) = ψη(|q
′|). At this time, E(q) has

a minimizer in H1(Ω). If η < 1/(2a), then

ψ∗∗
η (|q′|) =







ψη(|q
′|), |q′| ∈ [0, θ1] ∪ [θ2,+∞),

(
1

a
+ 2η

)

θ1|q
′| −

(
1

2a
+ η

)

θ21, |q′| ∈ (θ1, θ2),

0 5 10 15 20
0

1

2

3

4

5

6

**

X 11.57

X 0.14 0 5 10 15 20
0

0.1

0.2

0.3
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Figure 2: Left: the graph of the ψη and ψ∗∗

η when a = 0.5 and η = 0.01, in which case θ1 = 0.14 and
θ2 = 11.57, right: the error ψη − ψ∗∗

η .
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where θ1 > 0 and θ2 > 0 satisfy

θ1
a

+ 2ηθ1 =
a

θ2
+ 2ηθ2,

a ln |θ2|+
a

2
− a ln a+ ηθ22 = −

(
1

2a
+ η

)

θ21 +

(
1

a
+ 2η

)

θ1θ2,

(2.6)

and

dψ∗∗
η (|q′|)

dq′
=







q′

a
+ 2ηq′, |q′| ≤ θ1,

a

q′
+ 2ηq′, |q′| ≥ θ2,

(
1

a
+ 2η

)

θ1, θ1 < q′ < θ2,

−

(
1

a
+ 2η

)

θ1, −θ2 < q′ < −θ1.

Then using [12, Theorem 9.1], we have

min
q∈H1(Ω)

E∗∗(q) = inf
q∈H1(Ω)

E(q),

where

E∗∗(q) =

∫

Ω
ψ∗∗
η (|q′|)dx+

λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx.

Since u and v are the simple bounded measurable functions, then we have the following

partition of Ω:

Ω = (∪jSj) ∪ Σ with |Σ| = 0,

and

u(x)− v(x) = cj , ∀x ∈ Sj ,

where cj are constants. Suppose q0(x) ∈ H1(Ω) such that

E∗∗(q0) = inf
q∈H1(Ω)

E(q),

then q0(x) satisfies the following problem:

d

dx

[
d

dq′0
ψ∗∗
η (|q′0|)

]

= λq0(x) + α
(
q0(x)− (u(x)− v(x))

)
, a.e. in Ω,

d

dq′0
ψ∗∗
η (|q′0|)|x=l1 =

d

dq′0
ψ∗∗
η (|q′0|)|x=l2 = 0.

And therefore we have ∀x ∈ Ω,

d

dq′0
ψ∗∗
η (|q′0(x)|) =

∫ x

l1

[
λq0(t) + α(q0(t)− (u(t)− v(t)))

]
dt. (2.7)
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Now we introduce the following notation:

Ω1 =

{

x ∈ Ω :
dψ∗∗

η (|q′0(x)|)

dq′0
=

(
1

a
+ 2η

)

θ1

}

,

Ω2 =

{

x ∈ Ω :
dψ∗∗

η (|q′0(x)|)

dq′0
= −

(
1

a
+ 2η

)

θ1

}

.

To show that q0(x) is also a minimizer of E(q), it is enough to show that |Ω1| = 0 and

|Ω2| = 0. By contradiction, if |Ω1| > 0, then there is at least one measurable set Sj such

that |Ω1 ∩ Sj| > 0. Let S∗
j = Ω1 ∩ Sj, we have

(
1

a
+ 2η

)

θ1 =

∫ x

l1

[
λq0 + α(q0 − (u− v))

]
dt, ∀x ∈ S∗

j .

When derivating with respect to x on both sides of the above equality, we find

q0(x) =
α

λ+ α

(
u(x)− v(x)

)
=

α

λ+ α
cj , a.e. in S∗

j .

Applying the Stampacchia’s result [19], one obtains

q′0(x) = 0, a.e. in S∗
j .

But this is a contradiction, according to θ1 < q′0(x) < θ2, ∀x ∈ S∗
j ⊆ Ω1. In the same

way one can prove |Ω2| = 0.

From Theorem 2.1 and Eq. (2.7), we can obtain the inequality

2η|q′0(x)| ≤

∣
∣
∣
∣

d

dq′0
ψ∗∗
η (|q′0(x)|)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ x

l1

[
λq0(t) + α(q0(t)− (u(t)− v(t)))

]
dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ x

l1

[
(λ+ α)q0(t)− α(u(t)− v(t))

]
dt

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ x

l1

[

(λ+ α)
α

λ+ α
sup
x∈Ω

{
u(t)− v(t)

}
− α inf

x∈Ω

{
u(t)− v(t)

}
]

dt

∣
∣
∣
∣

≤ α|Ω|
(

sup
x∈Ω

{
u(t)− v(t)

}
− inf

x∈Ω

{
u(x)− v(x)

})

.

So, q0(x) has the properties

|q′0(x)| ≤
α

2η
|Ω|
(

sup
x∈Ω

{
u(t)− v(t)

}
− inf

x∈Ω

{
u(x)− v(x)

})

, a.e. in Ω. (2.8)

When η is sufficient small, |q′0(x)| is allowed to be large, so q0(x) can have large

jumps to maintain image contrast, where q0(x) is a minimizer of E(q).
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Next, we consider the existence of the solution to the problem

inf
q∈W 1,2(Ω)

∫

Ω

[
φa(|Dq|) + η|Dq|2

]
dx+

λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx, (2.9)

where Ω ⊂ R
2 is a bounded, open, and connected domain with Lipschitz boundary, q

is a scalar function that belongs to W 1,2(Ω), W 1,2(Ω) = H1(Ω) consists of all locally

summable functions q : Ω → R such that for each multiindex |α| ≤ 1, Dαq exists in the

weak sense and belongs to L2(Ω). We denote

F(q) :=

∫

Ω
g(x, q,∇q)dx, (2.10)

where

g(x, q,∇q) = φa(|∇q|) + η|∇q|2 +
λ

2
q2 +

α

2

(
q − (u− v)

)2
. (2.11)

g : Ω ×R×R
2 → R is a Carathéodory function as in (2.11), that is, g(·, s, ξ) : Ω → R

is measurable for all (s, ξ) ∈ R × R
2, g(x, ·, ξ) : R → R is measurable for all (x, ξ) ∈

Ω × R
2, and g(x, s, ·) : R2 → R is continuous for almost every (x, s) ∈ Ω × R. In fact

it has been proved that the convexity or the quasi-convexity of the integrand g with

respect to the last component ξ is necessary to the weak lower semi-continuity of the

given integral [28,31]. g is quasi-convex in the sense of Morrey [31], that is, for almost

every x0 ∈ Ω, q0 ∈ R, p0 ∈ R
2, and any ϕ ∈W 1,κ

0 (Ω) there holds

1

Ln(Ω)

∫

Ω
g
(
x0, q0, p0 +Dϕ(x)

)
dx ≥ g(x0, q0, p0),

where κ ≥ 1, Ln denotes the n-dimensional Lebesgue measure. We also recall that

in the scalar case, quasi-convexity and ordinary convexity are equivalent. So F is

not weakly sequentially lower semi-continuous. The direct method of the calculus of

variations, which is used to establish the existence of minima for the given integral,

relies on the lower semi-continuity of the integral. However, it is important to note

that convexity is not a necessary condition for the existence of minima [28]. Borrowing

the proof idea from Theorem 2.2, the first step in dealing with such problems is to

apply the relaxation theorem. Instead of minimizing F directly, one computes the

minimizers of a relaxed functional RF , which is defined as the largest weakly lower

semi-continuous functional lower than F . Let X ⊂ W 1,2(Ω) be a closed and convex

subset. The relaxation RF of F : X → R ∪ {∞} is defined as follows:

RF(q) := inf
{

lim inf
k

F(qk) : {qk} ⊂ X and qk ⇁ q in W 1,2(Ω)
}

.

Lemma 2.2. Since g : Ω×R×R
2 → R

⋃
{∞} is normal and satisfies

g(x, q, t) ≥ η|t|2,

then RF is weakly sequentially lower semi-continuous in W 1,2(Ω).
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Proof. The proof is similar to the proof of [37, Lemma 5.4].

The convexification gc with respect to the last variable is defined as the largest

convex integrand below g. Using Carathéodory’s theorem, it follows that

gc(x, q, t) = inf

{
n+1∑

k=1

λkg(x, q, tk) : 0 ≤ λk ≤ 1,

n+1∑

k=1

λktk = t

}

.

Lemma 2.3. Let g : Ω×R×R
2 → R

⋃
{∞} be as in (2.11). Then the convex hull gc of

g with respect to the last variable is

gc(x, q, t) =







1

2a
t2 + ηt2 +

λ

2
q2 +

α

2

(
q − (u− v)

)2
, |t| ≤ θ1,

(
1

a
+ 2η

)

θ1|t| −

(
1

2a
+ η

)

θ21 +
λ

2
q2 +

α

2

(
q − (u− v)

)2
, θ1 < |t| < θ2,

a ln |t|+
a

2
− a ln a+ ηt2 +

λ

2
q2 +

α

2

(
q − (u− v)

)2
, |t| ≥ θ2,

where θ1 and θ2 satisfy (2.6).

An example of the graphs of g and its convex hull gc is shown in Fig. 3.

Lemma 2.4. Let g : Ω×R×R
2 → R

⋃
{∞} be as in (2.11). Then

RF(q) = Fc(q) :=

∫

Ω
gc(x, q,Dq)dx, q ∈W 1,2(Ω).

Proof. Define

gk(x, q, t) = φa(|t|) + η|t|2 +
λ

2
q2 +

α

2

(
q − (u− v)

)2
+

|t|3

k
,

Figure 3: Left: the graph of the g and gc when a = 0.5, η = 0.01 and all other terms independent of t are
assumed to be 0, in which case θ1 = 0.14 and θ2 = 11.57, right: the error g − gc.
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then gk pointwise converges to the function g satisfying

gk(x, q, t) ≥
|t|3

k
.

Moreover,

0 ≤ gc(x, q, t) ≤ c
(
|q|2 + |t|2

)
, (x, q, t) ∈ Ω×R×R

2,

where

c = max

{
1

2a
+ η,

λ+ α

2

}

> 0.

Applying [37, Theorem 5.6], we have

RF(q) = Fc(q) :=

∫

Ω
gc(x, q,Dq)dx, q ∈W 1,2(Ω).

The proof is complete.

Lemma 2.5. Let q ∈W 1,2(Ω), u ∈ L∞(Ω), v ∈ L∞(Ω), and assume that

r ≥ ess sup
x∈Ω

{u(x)− v(x)}, s ≤ ess inf
x∈Ω

{u(x)− v(x)}.

Then

Fc(min{q, r}) ≤ Fc(q), Fc(max{q, s}) ≤ Fc(q).

Proof. We only show the first assertion, the second then follows from the first by

considering −q and −(u− v). Denote q̃ = min{q, r}. Then

∫

Ω
gc(x, q̃,Dq̃)dx

=

∫

{q−r≤0}
gc(x, q,Dq)dx +

∫

{q−r>0}

(
λ

2
r2 +

α

2

(
r − (u− v)

)2
)

dx

≤

∫

{q−r≤0}
gc(x, q,Dq)dx +

∫

{q−r>0}

(
1

2a
t2 + ηt2 +

λ

2
q2 +

α

2

(
q − (u− v)

)2
)

dx

≤

∫

Ω
gc(x, q,Dq)dx.

The proof is complete.

Denote

M :=

{

q ∈W 1,2(Ω) : ‖q‖∞ ≤
α

λ+ α
‖u− v‖∞

}

.

It follows from Lemma 2.5 that every minimizer of Fc over W 1,2(Ω) already lies in M .

Thus minimizing Fc over W 1,2(Ω) is equivalent to minimizing Fc over M .
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Theorem 2.3. Suppose Ω ⊂ R
2 is bounded, open, connected, and Lipschitz, g : Ω×R×

R
2 → R

⋃
{∞} is defined as in (2.11), F : W 1,2(Ω) → R

⋃
{∞} is given as in (2.10),

u ∈ L∞(Ω), and v ∈ L∞(Ω), then the functional F attains a minimizer in W 1,2(Ω).

Proof. Let Fc :W 1,2(Ω) → R
⋃
{∞} be defined as in Lemma 2.4. From Lemmas 2.2

and 2.4, it follows that Fc is weakly sequentially lower semi-continuous on W 1,2(Ω).
Denote

M :=

{

q ∈W 1,2(Ω) : ‖q‖∞ ≤
α

λ+ α
‖u− v‖∞

}

,

then it is sufficient to show that Fc|M attains a minimizer. Now note that Fc(q) ≥
η‖Dq‖22 for every q ∈ W 1,2(Ω). Recall that the t-level sets of a function F : X → Y are

defined as levelt(F) := {x ∈ X : F(x) ≤ t}, t ∈ Y . Consequently, for every t ∈ R, we

have

levelt(F
c|M ) ⊂M ∩

{

q ∈W 1,2(Ω) : ‖Dq‖22 ≤
t

η

}

.

This shows that levelt(F
c|M ) is sequentially pre-compact, and thus Fc|M is weakly

sequentially coercive. Using [37, Theorem 5.1], the functional Fc attains a minimizer

in W 1,2(Ω). According to [12, Theorem 9.1], we have

inf
q∈W 1,2(Ω)

F(q) = inf
q∈W 1,2(Ω)

Fc(q),

then the functional F attains a minimizer in W 1,2(Ω).

3. Augmented Lagrangian method for the proposed model

To minimize our model (2.2), one may employ the associated gradient flow directly

to find the solution. But it is often expensive, which is due to the constraint on stability

conditions on the time step size.

In this work, we develop an augmented Lagrangian method for the minimization

of our model. In fact, the augmented Lagrangian method has been widely used for

minimizing non-differentiable or/and higher-order models [29, 39, 46, 54]. Precisely,

for the minimization of functional Eq. (2.2), we propose an equivalent constrained

optimization problem as follows:

min
q,p

∫

Ω

[
φa(|p|) + η|p|2

]
dx+

λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx,

s.t. p = ∇q,

and then consider the following augmented Lagrangian functional:

L(q,p;λ1) =

∫

Ω

[
φa(|p|) + η|p|2

]
dx+

λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx

+
γ1
2

∫

Ω
|p−∇q|2dx+

∫

Ω
λ1 · (p−∇q)dx, (3.1)
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where γ1 > 0 is a penalization parameter to be chosen in numerical implementation,

and λ1 ∈ R
2 is a Lagrange multiplier. Based on the theory of optimization, we need to

find saddle points of L in order to find minimizers of the original functional E(q). To

find a saddle point of L, we may apply an iterative algorithm: for each of q and p, we

fix the other one and seek a minimizer of the associated sub-problem, and then update

the Lagrange multiplier once all q and p are advanced. The process will be repeated

until the variables converge, which indicates the saddle point will be approximated.

Therefore, we consider the minimization of the following two sub-problems:

ε1(q;λ1) =
λ

2

∫

Ω
q2dx+

α

2

∫

Ω

(
q − (u− v)

)2
dx+

γ1
2

∫

Ω
(p−∇q)2dx

+

∫

Ω
λ1 · (p −∇q)dx,

ε2(p;λ1) =

∫

Ω

[
φa(|p|) + η|p|2

]
dx+

γ1
2

∫

Ω
|p −∇q|2dx+

∫

Ω
λ1 · (p −∇q)dx.

For the subproblem of p, the minimizer of ε2(p;λ1) has a closed-form solution.

Note that it could be written as follows [52,53]:

ε2(p;λ1) =

∫

Ω
φa(|p|)dx+

(γ1
2

+ η
)∫

Ω
|p− p∗|2dx+ C̃,

with p∗ = (γ1∇q − λ1)/(γ1 + 2η), and

C̃ =
γ1
2
|∇q|2 − λ1 · ∇q −

(γ1
2

+ η
)

|p∗|2

is independent of p. We present the minimizer of ε2(p;λ1) by finding that of the

integrand pointwisely.

Proposition 3.1. The minimizer of ε2(p;λ1) can be determined as follows:

argmin
p

ε2(p;λ1) =







γ1 + 2η

1/a+ γ1 + 2η
p∗, |p∗| ≤ a+

1

γ1 + 2η
,

1 +
√

1− 4a/((γ1 + 2η)|p∗|2)

2
p∗, |p∗| > a+

1

γ1 + 2η
,

(3.2)

where p∗ = (γ1∇q − λ1)/(γ1 + 2η).

Note p∗ = (p∗1, p
∗
2). By Proposition 3.1, one gets new updates of p1 and p2 as follows:

pk1(i, j) =







γ1 + 2η

1/a+ γ1 + 2η
p∗1(i, j), |p∗(i, j)| ≤ a+

1

γ1 + 2η
,

1 +
√

1− 4a/((γ1 + 2η)|p∗(i, j)|2)

2
p∗1(i, j), |p∗(i, j)| > a+

1

γ1 + 2η
,



Fusing Infrared and Visible Images via a First-Order Model 17

pk2(i, j) =







γ1 + 2η

1/a+ γ1 + 2η
p∗2(i, j), |p∗(i, j)| ≤ a+

1

γ1 + 2η
,

1 +
√

1− 4a/((γ1 + 2η)|p∗(i, j)|2)

2
p∗2(i, j), |p∗(i, j)| > a+

1

γ1 + 2η
,

where

p∗1(i, j) =
γ1∂

+
1 q

k−1(i, j) − λk−1
11 (i, j)

γ1 + 2η
,

p∗2(i, j) =
γ1∂

+
2 q

k−1(i, j) − λk−1
12 (i, j)

γ1 + 2η
,

and

|p∗(i, j)| =
√

(p∗1(i, j))
2 + (p∗2(i, j))

2.

The minimizer of ε1(q;λ1) has no closed form, and it could be determined by the

corresponding Euler-Lagrange equation as follows:

(λ+ α)q − γ1△q = B,

where

B = α(u− v)−∇ · (γ1p+ λ1).

Let h be the mesh size, Ω = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N} be the discretized image

domain and each point (i, j) is a grid point. We define the discrete backward and

forward differential operators with Neumann boundary condition as follows:

∂−1 q(i, j) =







q(i, j) − q(i− 1, j)

h
, 1 < i ≤M,

0, i = 1,

∂+1 q(i, j) =







q(i+ 1, j) − q(i, j)

h
, 1 ≤ i < M,

0, i =M,

∂−2 q(i, j) =







q(i, j) − q(i, j − 1)

h
, 1 < j ≤ N,

0, j = 1,

∂+2 q(i, j) =







q(i, j + 1)− q(i, j)

h
, 1 ≤ j < N,

0, j = N.

The gradient operators and the Laplace operator are defined accordingly

∇±q(i, j) =
(
∂±1 q(i, j), ∂

±
2 q(i, j)

)
,

△q(i, j) = ∂+1 ∂
−
1 q(i, j) + ∂+2 ∂

−
2 q(i, j).
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Figure 4: Expansion of the Laplacian convolution kernel to the image size: cyclically shift the original
convolution kernel, so that the central element of the kernel is at (0, 0).

Note p = (p1, p2), λ1 = (λ11, λ12). We calculate

B(i, j) = α
(
u(i, j) − v(i, j)

)
− γ1

(
∂−1 p

k
1(i, j) + ∂−2 p

k
2(i, j)

)

−
(
∂−1 λ

k−1
11 (i, j) + ∂−2 λ

k−1
12 (i, j)

)
,

and we have noticed that the size of q is bigger than the Laplacian convolution kernels

△, which is usually the case in practice, the convolution kernels need to be expanded

to the image size and padded according to Fig. 4. In fact, cyclic convolution with the

expanded kernel is equivalent to cyclic convolution with initial convolution kernel.

For the Fourier-based convolution to satisfy Neumann boundary condition, the im-

age needs to be expanded and padded as in [48]. By applying FFTs, one gets

(λ+ α)Fqk(i, j) − γ1F(△̃)Fqk(i, j) = FB(i, j), (3.3)

where F(·) is the two-dimensional Fourier transform function. Then once Fqk(i, j) is

calculated, qk(i, j) could be obtained using the two-dimensional inverse Fourier trans-

form.

After q and p are updated, the Lagrange multiplier λ1 will be advanced

λk11(i, j) = λk−1
11 (i, j) + γ1

(

pk1(i, j) − ∂+1 q
k(i, j)

)

, (3.4)

λk12(i, j) = λk−1
12 (i, j) + γ1

(

pk2(i, j) − ∂+2 q
k(i, j)

)

. (3.5)

This iterative method for approximating the saddle point of the functional (3.1) is given

in Algorithm 3.1. We mark it as Algorithm ALM-FFTs.

Algorithm 3.1 ALM for the minimization of the proposed model (Eq. 2.2).

1: Initialization: q0 = (α/(λ + α))(u− v), p0 and λ1
0.

2: for k ≥ 1 do

3: Compute the minimizer pk by (3.2), qk by (3.3), for the associated subproblems

with the fixed Lagrangian multiplier λ1
k−1.

4: Update the Lagrange multiplier λ1
k by (3.4) and (3.5).
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5: Measure the relative error of the solution qk (Eq. (4.1)) and stop the iteration if

they are smaller than a given threshold ǫr. Mark the solution as q∗.
6: end for

7: Calculate s = q∗ + v, and adjust the value range of s to [0, 1].

The following convergence result for the sequence {qk} could be proved using a sim-

ilar procedure as [3,46,52,53].

Theorem 3.1. Suppose (q∗,p∗;λ1
∗) is a saddle-point of the augmented Lagrangian func-

tional L(q,p;λ1). Let (qk,pk;λ1
k), k = 1, 2, 3, . . . be the sequence generated by Algo-

rithm 3.1. If γ1 + 2η > 1/a, then one gets

lim
k→∞

qk = q∗.

For a non-convex optimization problem, only local optimal solutions can be ob-

tained in most cases. In our convergence study, we prove that if a saddle-point of the

augmented Lagrangian functional exists, then the sequence generated by the proposed

algorithm converges to the saddle-point when γ1 + 2η > 1/a. However, as our model

is non-convex, the obtained minimizer might still be a local optimal solution.

4. Numerical experiments

In this section, we present numerical results obtained by applying our proposed

model with ALM-FFTs to fuse images from the infrared and visible ones. Our objec-

tive is to fuse the visible image and the infrared image, while preserving the thermal

radiation information from the infrared image and retaining the detailed appearance

information from the visible image. Additionally, our model aims to eliminate noise,

promote sharp edges and reduce the staircase effect. We compare the performance of

our model with other image fusion techniques such as the TV model, the Huber model,

LP, DWT, DTCWT, CVT, NSCT, MSVD, GFF. For all the numerical experiments, we use

the following stopping criterion:

‖qk − qk−1‖F
‖qk−1‖F

< 1× 10−7. (4.1)

To monitor the convergence of the iterative process, we check the following relative

residual as in [39]:

Rk =
‖pk −∇qk‖F

|Ω|
, (4.2)

the relative error of the Lagrange multipliers λ1
k

Lk =
‖λ1

k − λ1
k−1‖F

‖λ1
k−1‖F

, (4.3)
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and the relative error of the solution qk

‖qk − qk−1‖F
‖qk−1‖F

, (4.4)

where ‖ · ‖F is the Frobenius norm on Ω, |Ω| is the area of domain, and k refers to the

iteration number. Moreover, for the purpose of presentation, all the above quantities

are shown in log-scale in the figures. And we set the mesh size h = 0.01, the parameters

a = 2, γ1 = 0.5 in all experiments. The experiments are programmed in MatLab 2015a

on an Intel(R) Core(TM) i7-8550U CPU@ 1.80GHz 2.00GHz desktop with 16.0 GB

RAM.

When there is no standard reference image, eight quantitative metrics are used

to evaluate the performance of different fusion methods. They include entropy (EN),

standard deviation (SD), the mean structural similarity index measure (MSSIM), spatial

frequency (SF), correlation coefficient (CC), average gradient (AG), peak signal-to-

noise ratio (PSNR), and edge retentiveness (QAB/F ) [17,38,55].

To be specific, we recall these metrics one by one in what follows. The entropy (EN)

represents the average amount of information in an image, and it is defined as follows

EN = −

L−1∑

i=0

Pi log2 Pi,

where L is the total gray level of the image, Pi is the ratio of the number of pixels Ni

with the gray value of i to the number of pixels N . The larger the value of EN, the

richer the information of the fused image.

The standard deviation (SD) is an objective evaluation index to measure the rich-

ness of image information. A larger SD indicates the higher contrast of the fused image,

SD =

√

M ×N
∑M

i=1

∑N
j=1(u(i, j) − ū)2

,

where u is the fused image, ū is the mean of the signal u, and M,N denote the dimen-

sions of the signal u.

The mean structural similarity index measure (MSSIM) is used to describe how the

structure inside an image is maintained. Specifically, the larger the MSSIM, the better

the structure is kept. This measure is defined as follows:

MSSIM =
SSIM(A,F ) + SSIM(B,F )

2
,

where

SSIM(A,F ) =
2F̄ Ā+ c1

F̄ 2 + Ā2 + c1
·
2σFσA + c2
σ2F + σ2A + c2

·
σFA + c3
σFσA + c3

,

and A represents the source image, F is the fused image, F̄ is the mean of the signal F ,

σF is the standard deviation of the signal F , σFA is the covariance of the signal F and

A, c1 = (k1L)
2, c2 = (k2L)

2, c3 = c2/2, k1 = 0.01, k2 = 0.03, L = 255.
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The spatial frequency (SF) is based on the image gradient and it reflects the image

detail and texture sharpness level. The average gradient (AG) represents the ability

to express the texture and detail of the fused image and can be used to evaluate the

sharpness of the image. Both SF and AG can be used to measure the edge texture infor-

mation, and the larger the values of SF or AG, the richer the edge texture information

depicted in the fused image. They are given as follows:

SF =

√
√
√
√

1

M ×N

(
M∑

i=1

N∑

j=2

(
F (i, j) − F (i, j − 1)

)2
+

M∑

i=2

N∑

j=1

(
F (i, j) − F (i− 1, j)

)2

)

,

AG =
1

M ×N

M∑

i=2

N∑

j=2

√

(F (i, j) − F (i, j − 1))2 + (F (i, j) − F (i− 1, j))2

2
,

where F is the fused image, and M,N denote the dimensions of the signal F .

The correlation coefficient (CC) measures the degree of linear correlation between

a fused image and the source images, that is, the infrared and visible images. CC is

defined as

CC =
ρAF + ρBF

2
,

where ρAF is the correlation coefficient of the signal A and F . The larger CC indicates

the fused image is more closely related to the source images.

Peak signal-to-noise ratio (PSNR) represents the ratio between the maximum possi-

ble power of a signal and the power of corrupting noise that affects the representation

fidelity of the signal. Since many signals have a wide dynamic range, PSNR is usually

expressed in terms of the logarithmic decibel scale. PSNR could reflect the distortion

degree of the fused image and is given as

PSNR = 10 log10
2r2

MSE(A,F ) +MSE(B,F )
,

where r is the peak value of the fused image, and MSE represents the mean square

error.

QAB/F uses local metrics to measure the degree of the edges transferred from the

source images to the fused image, and it is defined as follows:

QAB/F =

∑M
i=1

∑N
j=1

(
QAF (i, j)ωA(i, j) +QBF (i, j)ωB(i, j)

)

∑M
i=1

∑N
j=1

(
ωA(i, j) + ωB(i, j)

) ,

where QAF (i, j) = QAF
g (i, j)QAF

a (i, j), QAF
g (i, j) and QAF

a (i, j) are the edge strength

and orientation values at the location (i, j), ωA(i, j) and ωB(i, j) denote the weights of

QAF (i, j) and QBF (i, j).
We first consider the influence of the parameters η on the performance of our model

for the image “Plane” with λ = 2× 103, α = 2× 103 in Fig. 5. As η increases, the fusion

image becomes smoother. For instance, when η = 0.5, the regular term in our model
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Table 2: The evaluation index values with different parameters by our model for the image in Fig. 5.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

η = 0 2.6625 15.5342 0.4658 6.9999 0.4983 7.2172 14.1989 0.4590

η = 0.01 2.6613 15.4808 0.4663 6.9687 0.4986 7.2025 14.2036 0.4599

η = 0.1 2.6553 15.1442 0.4685 6.9051 0.4994 7.1781 14.2389 0.4819

η = 0.5 2.6386 14.3236 0.4776 6.8185 0.4988 7.0884 14.8042 0.5407

becomes strictly convex, resulting in a heavily blurred tail boundary on the plane in the

fusion image. Table 2 clearly illustrates that smoother images yield higher values for

MSSIM, PSNR and QAB/F . This suggests that these three metrics favor over-smoothed

results.

To show the convergence of the iterative process of the our algorithm with different

η, we present the plots of the relative residual Rk (4.2), the relative error in the La-

grange multiplier Lk (4.3), the relative error of qk (4.4), and the energy E(qk) versus

iteration for the experiment “Plane” in Fig. 6. These plots demonstrate the conver-

gence of the iterative process, which indicates that a saddle point of the augmented

Lagrangian functional and thus a minimizer of the image fusion model is being ap-

proached.

In the following experiments, we fix η = 1× 10−4.

To demonstrate how our model promotes sharp boundaries, we apply it to the im-

age “M3FD” with λ = 2× 103, α = 2× 103, as shown in Fig. 7. We compare our model

with the TV model and the Huber model for their performance. All the three mod-

els generate good fused images, however, they do show difference in generating fine

details. To show this, we present the zoomed-in parts of the obtained images. The ap-

pearance of pedestrians demonstrates that our model could produce clear edges while

both the TV model and the Huber model yield fuzzy edges. This is due to the fact that

the potential function of our regularizer presents a slower growth rate than those of

the other two models, which weakens the competition of the regularization term with

the fitting term, allows relatively large jumps, and thus helps preserve sharp edges.

In Fig. 8, we present another experiment “Lamplight” to show that our model can

suppress the staircase effect while removing noise. From the zoomed-in images, one

can observe that both our model and the Huber model could yield smooth patches for

the vehicle while the TV model shows the block phenomenon. This justifies that our

model is capable of reducing the staircase effect during the image fusing processing. As

discussed before, this feature is caused by our specifically designed regularizer which

presents as the Tikhonov regularizer for regions with relatively small gradients. In this

experiment “Lamplight”, the infrared image is corrupted by Gaussian noise (σ = 0.01),

and we use λ = 2× 102, α = 3× 102.

We present the comparison of the quantitative metrics values of those fused images,

including EN, SD, MSSIM, SF, CC, AG, PSNR, and QAB/F in Tables 3 and 4. It can be

seen from the above experiments that the images processed by our model could al-
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Visible IR

η = 0 η = 0 (zoomed-in)

η = 0.01 η = 0.01 (zoomed-in)

η = 0.1 η = 0.1 (zoomed-in)

η = 0.5 η = 0.5 (zoomed-in)

Figure 5: A visible image, an infrared image, the fused images and zoomed-in patches by our model with
different η, respectively.
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Figure 6: The plots of the relative residuals Rk (4.2), the relative errors in Lagrange multiplier Lk (4.3),

the relative error in qk (4.4), and the energy E(qk) versus iteration for the experiment “Plane” using our
model with different algorithms. All the quantities are presented in log-scale.

ways get a better visual effect, but the corresponding image quantitative metrics values

may not be optimal. Since these quantitative metrics are based on the least squares

measurement, they are more inclined to over-smoothed results.

In order to observe the influence of the parameters λ and α on the performance

of our model, we consider an experiment “Kaptein” with different values of λ and α
in Fig. 9. We mainly compare two cases. One case is to set λ = 0 while varying the

value of α. Then our model imposes no constraint on the difference between the pixel

intensities of s and v. As can be seen from the images on the left, when α is relatively

small, such as α = 1 and α = 10, the fused image is close to the visible image; as

α gradually increases, the fused image shows more and more information from the

infrared image. Another case is to examine the effect of λ on the fused image by fixing

α = 2×103. It can be seen from the images on the right column that when λ is relatively

small, such as λ = 2, λ = 20 and λ = 2 × 102, the fused image is close to the infrared

image; as λ gradually increases, the fused image presents more and more information

from the visible image. From Fig. 9 or Table 5, we can see that the image fusion works

best when λ = α = 2× 103. In fact, for most experiments, more pleasant fused images

could be obtained by taking λ and α with the same order of magnitude.

In Figs. 10 and 11, we compare our method with other image fusion techniques

(LP, DWT, DTCWT, CVT, NSCT, MSVD, GFF) on a set of image data-sets without stan-

dard reference images. The results show that our model can generate fused images
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Visible Visible (zoomed-in)

IR IR (zoomed-in)

TV TV (zoomed-in)

Huber Huber (zoomed-in)

Ours Ours (zoomed-in)

Figure 7: A visible image, an infrared image, the fused images and zoomed-in patches by the TV model,
Huber model and our model, respectively.
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Visible Visible (zoomed-in)

IR IR (zoomed-in)

TV TV (zoomed-in)

Huber Huber (zoomed-in)

Ours Ours (zoomed-in)

Figure 8: A visible image, an infrared image, the fused images and zoomed-in patches by the TV model,
Huber model and our model, respectively.
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Visible IR

λ = 0, α = 1 λ = 2, α = 2000

λ = 0, α = 10 λ = 20, α = 2000

λ = 0, α = 100 λ = 200, α = 2000

λ = 0, α = 1000 λ = 2000, α = 2000

Figure 9: A visible image, an infrared image and the fused images by our model and ALM-FFTs with
different parameters λ and α.
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Visible IR

LP DWT

DTCWT CVT

NSCT MSVD

GFF Ours

Figure 10: The visible image, the infrared image, the images fused using eight methods respectively (LP,
DWT, DTCWT, CVT, NSCT, MSVD, GFF and our method).
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Visible IR

LP DWT

DTCWT CVT

NSCT MSVD

GFF Ours

Figure 11: The visible image, the infrared image, the images fused using eight methods respectively (LP,
DWT, DTCWT, CVT, NSCT, MSVD, GFF and our method).
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Visible IR

IFCNN SeAFusion

SDNet RFN-Nest

DenseFuse PMGI

FusionGAN Ours

Figure 12: The visible image, the infrared image, the images fused using eight methods respectively (IFCNN,
SeAFusion, SDNet, RFN-Nest, DenseFuse, PMGI, FusionGAN and our method).
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Table 3: The evaluation index values with different image fusion methods for the image in Fig. 7.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

TV 6.9199 31.2848 0.7015 6.2344 0.7340 2.1132 19.4544 0.3314

Huber 6.9183 31.2912 0.7013 6.1090 0.7344 2.0280 19.4124 0.3412

Ours 6.9724 32.5565 0.7004 5.9448 0.7348 2.0743 18.9231 0.3301

Table 4: The evaluation index values with different image fusion methods for the image in Fig. 8.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

TV 7.0862 37.5495 0.4563 5.0750 0.6536 2.4852 12.3558 0.7721

Huber 7.0084 35.8603 0.4553 4.6989 0.6629 2.3589 12.3597 0.7887

Ours 6.9369 34.1111 0.4415 5.2257 0.6660 2.2963 12.3880 0.7845

Table 5: The evaluation index values with different parameters by our model for the image in Fig. 9.

λ α EN SD MSSIM SF CC AG PSNR QAB/F

0 1 6.8887 35.8104 0.4198 6.4637 0.4594 3.1561 14.9247 0.4070

0 10 6.7089 27.2247 0.3874 5.3021 0.4323 2.6202 14.0369 0.4536

0 100 6.4197 25.9407 0.3641 6.4163 0.3953 2.4459 12.1552 0.5046

0 1000 6.5508 29.4900 0.3832 6.2351 0.3897 2.5528 12.6723 0.5309

2 2000 6.6853 32.5063 0.3996 6.3454 0.3912 2.7112 13.2749 0.4997

20 2000 6.6678 32.3565 0.4046 6.3430 0.3975 2.7206 13.3274 0.4984

200 2000 6.6041 31.3398 0.4516 6.3719 0.4583 2.8342 13.7979 0.4844

2000 2000 6.8154 38.7321 0.5800 6.9210 0.6050 3.5985 16.1925 0.3510

Table 6: The evaluation index values with different image fusion methods for the image in Fig. 10.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

LP 7.2195 38.0366 0.4685 18.3916 0.4879 8.7048 15.6268 0.0875

DWT 7.1181 35.1982 0.4601 19.5384 0.4848 9.4372 16.1021 0.1194

DTCWT 7.0409 33.5963 0.4651 17.9801 0.4965 8.4826 15.9943 0.1009

CVT 6.9217 30.3511 0.4798 17.3409 0.5246 8.3842 16.0801 0.1257

NSCT 7.0791 34.2595 0.4710 18.1242 0.5001 8.5865 15.8084 0.0883

MSVD 7.1487 36.4634 0.5257 20.6421 0.5468 9.7427 15.0372 0.1429

GFF 7.3749 44.1471 0.3185 18.3067 0.3027 8.8080 13.2561 0.1056

Ours 7.0438 36.6781 0.5537 11.9666 0.5742 5.6163 15.0443 0.4127

with better visual effects than other techniques. To quantify the comparison of those

image fusion techniques, we provide eight quantitative metrics values to conduct these

techniques in Tables 6 and 7. These tables illustrate that our method produces higher

quantitative metrics values than most of the existing techniques. In these experiments,

we take λ = 5 × 103, α = 3 × 103 in image “b07”, λ = 5 × 103, α = 2 × 103 in image

“b08”.
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Table 7: The evaluation index values with different image fusion methods for the image in Fig. 11.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

LP 4.8541 9.9810 0.5992 8.3952 0.5223 3.7192 16.6710 0.0996

DWT 4.8661 9.4888 0.5934 8.5490 0.5105 3.8298 16.4292 0.1184

DTCWT 4.7671 8.9947 0.6018 8.3277 0.5202 3.6646 16.5586 0.1087

CVT 4.7397 8.4963 0.6113 8.2225 0.5335 3.6812 16.4083 0.1193

NSCT 4.7890 9.0892 0.6057 8.2878 0.5276 3.6520 16.6430 0.1006

MSVD 5.1250 10.9808 0.5937 11.0383 0.5555 5.0746 16.0594 0.1621

GFF 5.3948 18.3679 0.1923 7.7255 0.1497 3.7157 12.6442 0.2530

Ours 5.8148 20.9479 0.4691 10.0981 0.4467 3.4459 12.6918 0.3777

Table 8: The evaluation index values with different image fusion methods for the image in Fig. 12.

Methods EN SD MSSIM SF CC AG PSNR QAB/F

IFCNN 2.8638 22.5367 0.3456 7.6315 0.3617 6.1310 14.7549 0.1383

SeAFusion 2.9186 27.7988 0.3604 7.3859 0.3552 5.8535 13.5210 0.1953

SDNet 2.6417 12.7151 0.3649 6.7195 0.4069 5.3739 14.9704 0.1821

RFN-Nest 2.7424 15.1628 0.3118 3.3264 0.3950 2.7195 15.5064 0.4498

DenseFuse 2.7404 16.0193 0.3227 4.5318 0.3971 3.6258 15.4969 0.2749

PMGI 2.7938 16.1761 0.3867 4.5228 0.4357 3.6640 15.5522 0.3071

FusionGAN 2.6941 14.5424 0.3501 3.6536 0.3679 2.9907 12.0082 0.5503

Ours 2.6329 11.9441 0.3346 4.3093 0.4382 3.3466 15.6477 0.4316

In Fig. 12, we compare our method with a few popular deep learning-based meth-

ods, including IFCNN, SeAFusion, SDNet, RFN-Nest, DenseFuse, PMGI, and Fusion-

GAN. The results show that our method can produce similar fusion results as SDNet,

RFN-Nest, DenseFuse and PMGI. When compared to our model, image fusion using

FusionGAN has a lower grayscale while image fusion using CNN and SeA Fusion has

a stronger grayscale contrast. Moreover, it can be seen from the Table 8 that our method

gives larger values of CC and PSNR than those deep learning-based method for the im-

age in Fig. 12. In this experiment, we take λ = 2× 103, α = 3× 103.

5. Conclusions

In this paper, we propose a non-convex first-order variational model for image fu-

sion. Our model incorporates a novel regularizer that is able to eliminate noise, pre-

serve sharp edges and reduce the staircase effect effectively. We prove that there exists

a minimizer in W 1,2(Ω) for our model and also discuss its maximum-minimum princi-

ple. Augmented Lagrangian method (ALM) is used to design a fast algorithm to solve

our model efficiently. We present numerical experiments to demonstrate the specific

features of our model and compare it with other image fusion techniques.
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