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Abstract. This paper proposes a novel method to establish the well-posedness of uni-
axial perfectly matched layer (UPML) method for a two-dimensional acoustic scat-
tering from a compactly supported source in a two-layered medium. We solve a long
standing problem by showing that the truncated layered medium scattering problem is
always resonance free regardless of the thickness and absorbing strength of UPML. The
main idea is based on analyzing an auxiliary waveguide problem obtained by truncat-
ing the layered medium scattering problem through PML in the vertical direction only.
The Green function for this waveguide problem can be constructed explicitly based on
the separation of variables and Fourier transform. We prove that such a construction
is always well-defined regardless of the absorbing strength. The well-posedness of the
fully UPML truncated scattering problem follows by assembling the waveguide Green
function through periodic extension.

AMS subject classifications: 35J05, 35J08, 74J20, 78A40

Key words: Helmholtz equation, perfectly matched layer, layered medium scattering, source
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1 Introduction

Large amount of applications in optics (electromagnetics) and acoustics require the accu-
rate analysis of wave scattering in layered media. Examples include optical waveguides,
near field imaging, communication with submarine, detection of buried objects and so
on. As a result, the analysis and numerical computation of layered medium scattering
problems have been constantly attracting attentions from researchers both in engineer-
ing and mathematical communities [3, 18, 23, 30].
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In this paper, we are concerned with a two dimensional time harmonic acoustic scat-
tering in a two-layered medium

∆u+k(x)2u= f in R
2\Γ, (1.1)

where f is a source term with a compact support D∈R2, and u is the scattered field, as
shown in Fig. 1(a). Denote by x=(x1,x2) the two dimensional coordinates. The interface Γ

is simply assumed to be the axis x2=0, by which the domain R2 is divided into the upper
half space R2

+ and lower half R2
−, respectively. The wavenumber k(x) takes the form

k(x)=

{

k1, x∈R2
+,

k2, x∈R2
−,

(1.2)

where k1 and k2 are two positive constants. We assume the field and flux are continuous
across the interface Γ,

[u]Γ =0, [∂nu]Γ =0, (1.3)

where [·] denotes the jump on Γ. The scattered field u also satisfies the Sommerfeld
radiation condition at infinity

lim
r→∞

√
r

(

∂u

∂r
−ik(x)u

)

=0, r= |x|. (1.4)

Due to important roles they play in applications, the layered medium scattering prob-
lems have been studied extensively in the literature. We refer readers to [2, 25] for the
well-posedness of the acoustic scattering problems in a two-layered medium with locally
perturbed interfaces and to [21] for the well-posedness of layered electromagnetic scat-
tering problems. Discussions on the inverse scattering problems in a layered medium
can be found in [3]. For numerical computations, given the infinite domain of Eq. (1.1),
integral equation method is a natural candidate as they discretize the support D alone

(a) (b) (c)

Figure 1: The two-layered medium scattering problem with a compactly supported source f . (a) The original
scattering problem. (b) The scattering problem with a full UPML truncation. (c) The waveguide problem with
two infinitely long UPMLs on the top and bottom.
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and impose the Sommerfeld radiation condition by construction. More specifically, if we
give the layered medium Green function Gk1,k2

(x,y), the scattered field u can be found
simply by a convolution

u(x)=
∫

D
Gk1,k2

(x,y) f (y)dy. (1.5)

However, in order to make effective use of this approach, one must generally evaluate the
governing Green function Gk1,k2

(x,y) that satisfies the continuity conditions (1.3) at the in-
terface efficiently. Using Fourier analysis, the integral form of Gk1,k2

(x,y) can be derived
in terms of Sommerfeld integrals [38], which, however, is quite expensive to evaluate in
practice [9]. Over the past few decades, a number of approaches have been proposed to
remedy this issue. For instance, fast algorithms given in [10, 24, 34–37] were developed
to efficiently evaluate the layered medium Green functions, while authors in [8] over-
came the expensive evaluation of layered medium Green functions through windowed
function techniques. In [26], a hybrid method that combined the physical and Fourier do-
mains was proposed to accelerate the computation of two-layered scattering problems.

On the other hand, a more widely used approach for such an infinite domain prob-
lem is by introducing a perfectly matched layer (PML) to truncate the domain, so that
standard methods like finite difference or finite element methods can be applied. The
basic idea of PML, which was first proposed by Berenger [5] in 1994, is to truncate the
infinite domain by an artificial layer with zero Dirichlet boundary condition in the exte-
rior, as shown in Fig. 1(b). The layer has been specifically designed to absorb all outgoing
waves propagating from the interior of the computational domain. Due to the effective-
ness of this method in computation, considerable attentions have been paid to the con-
vergence study, which include the acoustic scattering problems by Lassas et al. [27, 28],
Hohage et al. [22], Collino et al. [20], Chandler-Wilde et al. [11], the grating problems with
adaptive FEM by Chen et al. [14], Bao et al. [1], the electromagnetic scattering problems
in [4, 6, 12, 29], and the elastic scattering problems in [7, 15]. As they all focused on the
scattering within homogeneous background, analysis for the layered medium scattering
problem becomes much more complicated due to the lack of closed form of the layered
Green function. Recently, great progress has been made by Chen and Zheng for acoustic
scattering problems [16] and for electromagnetic scattering problems from two-layered
media based on the Cagniard–de Hoop transform for the Green function [17].

However, despite all these contributions, a fundamental question remains open: Is the
truncated PML problem always resonance free with zero Dirichlet boundary condition?
In other words, for a scattering problem with positive wavenumber, is it always uniquely
solvable after a PML truncation, regardless of the thickness and absorbing strength of the
PML? This is an important theoretical issue for some hybrid methods based on the com-
bination of PML and boundary integral equations [31]. For acoustic scattering problem
in homogeneous background, Collino and Monk [20] showed that the truncated problem
has a unique solution except at a discrete set of exceptional frequencies for PML in curvi-
linear coordinates. They conjectured that the exceptional set might be empty. For layered
media scattering, the authors in [16] proved that the truncated problem has a unique
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solution when the PML absorbing strength is sufficiently large. In this paper, we give
a positive answer to that problem in the layered medium by showing the uniaxial PML
(UPML) truncated acoustic source scattering problem is always resonance free.

Our basic idea is that when PML is used to truncate the vertical direction only, the
medium structure becomes a closed waveguide (see Fig. 1(c)). The Green function due
to a primary point source in this waveguide can be constructed explicitly based on the
separation of variables and Fourier transform. It can be shown that such a construction is
always well-defined regardless of the absorbing strength. Once the horizontal truncation
by PML is added, we use a periodic extension through image point sources and convert
the fully truncated problem into the waveguide problem. Through Green’s identity, we
show this uniaxial PML Green function directly leads to the well-posedness of the trun-
cated acoustic scattering problem without any assumption on the absorbing strength of
UPML (other than that it is positive). In other words, we prove the UPML truncated
source scattering problem is unconditionally resonance free.

The outline of paper is given as follows. Section 2 introduces the UPML formulation
and presents our main results. Section 3 gives the explicit construction of the layered
Green function for a UPML truncated waveguide problem. Section 4 proves the well-
posedness of the fully UPML truncated layered medium scattering problem. The paper
is concluded with a brief discussion on the future work in Section 5.

Notations: Throughout the paper, we use C for a generic positive constant, of which
the dependence will be specified in the context. We write A.B (B& A) for the inequali-
ties A≤CB (B≥CA). AhB is used for an equivalent statement when both A.B and B.A
hold with different generic constants C. By rescaling, we also assume the compact sup-
port D of the source term f in Eq. (1.1) is enclosed by a disk centered at the origin of
radius Rh1. We divide the complex plane C into four regions, namely,

C
−+={z∈C : Re(z)<0, Im(z)>0},

C
++={z∈C : Re(z)>0, Im(z)>0},

C
−−={z∈C : Re(z)<0, Im(z)<0},

C
+−={z∈C : Re(z)>0, Im(z)<0}.

Denote (a)+=
√

a2 where
√· is taken on the branch with nonnegative real part.

2 UPML formulation and the main results

In this section, we restrict our discussion to the layered medium scattering problem with
ratio of the wavenumber κ :=k2/k1>1, as the analysis for κ<1 is the same by symmetry.

2.1 UPML formulation

As shown in Fig. 1(b), in order to truncate the scattering problem by UPML, we introduce
two rectangular boxes. One is the inner box Bin=(−L1/2,L1/2)×(−L2/2,L2/2) of sizes
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Lj>0, j=1,2, which contains D and is called the physical domain. Denote by B1
in=Bin∩R2

+

and B2
in = Bin∩R2

− the intersection of the box Bin with the upper and lower half spaces,
respectively. The other one is the outer box Bex = (−M1,M1)×(−M2,M2), with Mj =
Lj/2+dj and dj >0, j=1,2, where the parameter dj represents the thickness of the UPML
along the xj direction. It is Bex the computational domain we are concerned with. Denote

by B1
ex = Bex∩R2

+ and B2
ex = Bex∩R2

− the intersection of the box Bex with the upper and
lower half spaces, respectively.

Mathematically, UPML can be described by the following complex coordinate stretch-
ing [19]:

x̃j= xj+i

∫ xj

0
σj(t)dt=

∫ xj

0
αj(t)dt, xj ∈ [−Mj,Mj], j=1,2, (2.1)

where σj(t) is the absorbing function on [−Mj,Mj], and the medium function αj =1+iσj.
We assume that σj, j=1,2, are Lipschitz continuous and satisfy the following conditions:























σj(t)=0, t∈ [−Lj/2,Lj/2],

σj(t)≥0, σj(t)=σj(−t), t∈ [−Mj,Mj]\[−Lj/2,Lj/2],

σ̄j =
∫ −Lj/2

−Mj

σj(t)dt=
∫ Mj

Lj/2
σj(t)dt>0.

(2.2)

Here, σ̄j, j= 1,2 represent the absorbing strength of the UPML, which are also called ab-
sorbing constants. Throughout all the rest, we assume that kj, σ̄j,dj, and Lj are fixed pos-
itive constants and emphasize that the generic constants C appeared in notations .,&,
and h are dependent of those parameters.

With the definition above, the UPML truncation of the original scattering problem is
formulated as (see, e.g. [16])



















∂

∂x1

(

α2

α1

∂ũ

∂x1

)

+
∂

∂x2

(

α1

α2

∂ũ

∂x2

)

+α1α2k2ũ= f in Bex,

[ũ]=0, [∂x2 ũ]=0 on Γex,

ũ=0 on ∂Bex,

(2.3)

where Γex=Γ∩Bex, and ũ is the so-called truncated UPML solution which approximates
the original scattered solution u in the physical domain. The variational formulation of
the above truncated UPML problem reads: Find ũ∈H1

0(Bex) such that

a(ũ,v) :=(A∇ũ,∇v)Bex−
(

k2α1α2ũ,v
)

Bex
=−〈 f ,v〉Bex

, ∀v∈H1
0(Bex), (2.4)

where A=diag(α2/α1,α1/α2). Here, we denote by 〈 f ,v〉Bex
the duality paring between

f ∈H−1(Bex) and v∈H1
0 (Bex), as H−1(Bex) is the dual space of H1

0(Bex), and by (·,·)Bex the
usual L2-inner product on Bex.
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2.2 Main result

Our main result is concerned with the well-posedness of the variational equation (2.4).

Theorem 2.1. For any two distinct positive wavenumbers k1,k2, and any positive constants
dj, Lj, and σ̄j for j=1,2, there exists a unique solution ũ∈H1

0(Bex) to the variational equation (2.4)
for any f ∈L2(Bex).

Remark 2.1. In contrast with the previous well-posedness results in [16, 17, 27], where
absorbing constants σ̄j are required to be sufficiently large to exclude possible resonances,
our result affirmatively shows that the truncated problem is resonance free for any σ̄j>0.

In order to prove Theorem 2.1, we first show the existence of Green function for the
UPML truncated layered medium scattering problem



















∂

∂x1

(

α2

α1

∂GPML

∂x1

)

+
∂

∂x2

(

α1

α2

∂GPML

∂x2

)

+α1α2k2GPML=−δ(x−y), x,y∈Bex,

[GPML]=0, [∂x2 GPML]=0 on x2=0,

GPML=0 on ∂Bex.

(2.5)

The proof is based on the explicit construction of GPML(x,y). We consider the Green func-
tion G(x,y) for a waveguide problem (3.1) first, where UPMLs are only placed above and
below the interface Γ and truncate the domain in the x2 direction (see Fig. 1(c)). By plac-
ing periodic UPMLs leftwards and rightwards along the x1-direction and by introducing
periodically distributed source points, we could construct GPML(x,y) explicitly by the use
of G(x,y). Details are given in the following sections.

3 The Green function for the waveguide problem

Consider two infinitely long UPMLs that are placed at the top and bottom of the layered
domain, as shown in Fig. 1(c). The original scattering problem becomes a waveguide
problem. The Green function G(x,y) for the waveguide problem satisfy



















∂

∂x1

(

α2
∂G

∂x1

)

+
∂

∂x2

(

1

α2

∂G

∂x2

)

+α2k2G=−δ(x−y), x∈R×(−M2,M2),

[G]=0, [∂x2 G]=0 on Γ,

G=0 on x2=±M2,

(3.1)

where y = (y1,y2) denotes source point located in R×(−M2,M2). We require that the
Green function for the waveguide problem satisfies the Sommerfeld radiation condition

lim
ρ→∞

√
ρ

(

∂G

∂ρ
−ik(x)G

)

=0, ρ= |x1−y1|. (3.2)
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3.1 Explicit construction of G

We formally derive an explicit representation of G in this subsection and then verify it
does solve Eqs. (3.1)-(3.2) in Sections 3.2-3.4. Let us take the Fourier transform of G(x,y)
with respect to x1

Ĝ(ξ;x2,y2)=
1√
2π

∫ ∞

−∞
G(x,y)e−i(x1−y1)ξdx1. (3.3)

Here we implicitly use the property that Green function G only depends on the distance
|x1−y1| in the horizontal direction. For fixed y2 6=0 and ξ, it can be seen that Ĝ satisfies
the equation























d

dx2

(

1

α2

dĜ

dx2

)

+α2(k2−ξ2)Ĝ=− 1√
2π

δ(x2−y2), x2∈ (−M2,M2),

[Ĝ]=0, [Ĝ′(x2)]=0 on x2=0,

Ĝ=0 on x2=±M2.

(3.4)

Let Ω1 = R×(0,M2) and Ω2 = R×(−M2,0). Then, by direct calculation, one gets the
solution to problem (3.4) as follows: For i=1,2, if x,y∈Ωi, we have

Ĝ(ξ;x2,y2)=
Cii

2A
√

2πµi

[

eiµi(4M̃2−(ỹ2)+−(x̃2)+)−eiµi(2M̃2−(ỹ2)++(x̃2)+)

−eiµi(2M̃2+(ỹ2)+−(x̃2)+)+eiµi((x̃2)++(ỹ2)+)
]

+
i

2
√

2πµi

[

eiµi(x̃2−ỹ2)+−eiµi(2M̃2−(ỹ2)+−(x̃2)+)
]

. (3.5)

If x∈Ω3−i and y∈Ωi, i=1,2, then

Ĝ(ξ;x2,y2)=
i

A
√

2π

[

ei(µi(2M̃2−(ỹ2)+)+µ3−i(2M̃2−(x̃2)+))

−ei(µi(2M̃2−(ỹ2)+)+µ3−i(x̃2)+)−ei(µi(ỹ2)++µ3−i(2M̃2−(x̃2)+))
]

+
i√

2π(µ1+µ2)

(

1+
B

A

)

ei(µi(ỹ2)++µ3−i(x̃2)+), (3.6)

where

µi =
√

k2
i −ξ2, ǫi = e2iµi M̃2 , M̃2=

∫ M2

0
α2(t)dt

and

A=(1−ǫ1ǫ2)(µ1+µ2)+(ǫ1−ǫ2)(µ1−µ2)

=(1−ǫ2)(1+ǫ1)µ1+(1−ǫ1)(1+ǫ2)µ2, (3.7)

B=(µ1+µ2)ǫ1ǫ2−(ǫ1−ǫ2)(µ1−µ2), (3.8)

Ci=(µi−µ3−i)−(µ1+µ2)ǫ3−i, i=1,2. (3.9)
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Recall that the free space Green function for Helmholtz equation with wavenumber k≡k1

[18, p. 59] is

Φ(k1,x,y) :=
i

4
H

(1)
0

(

k1

√

(x1−y1)2+(x2−y2)2
)

=
i

4π

∫ +∞

−∞

1

µ1
ei(x1−y1)ξ+iµ1(x2−y2)+dξ,

which can be analytically extended to the case when x2−y2 are replaced by (x̃2− ỹ2)+.
Thus, by taking the inverse Fourier transform of Ĝ with respect to ξ, we obtain G(x,y)

G(x,y)=

{

Gi,i
layer

(

(x1, x̃2),(y1,ỹ2)
)

+Gi,i
res

(

(x1, x̃2),(y1,ỹ2)
)

, x,y∈Ωi,

G3−i,i
layer

(

(x1, x̃2),(y1,ỹ2)
)

+G3−i,i
res

(

(x1, x̃2),(y1,ỹ2)
)

, x∈Ω3−i, y∈Ωi

(3.10)

with i=1,2, where

Gi,i
res=−Φ

(

ki,
(

x1,2M̃2−(x̃2)+
)

,
(

y1,(ỹ2)+
)

)

+
i

4π

∫ +∞

−∞

ei(x1−y1)ξ

A
f i,i
x2 ,y2

(ξ)dξ, (3.11)

Gi,i
layer=Φ

(

ki,(x1, x̃2),(y1,ỹ2)
)

−Φ
(

ki,(x1, x̃2),(y1,−ỹ2)
)

+
i

4π

∫ +∞

−∞
ei(x1−y1)ξ gi,i

x2 ,y2
(ξ)dξ, (3.12)

G3−i,i
res =

i

2π

∫ +∞

−∞

ei(x1−y1)ξ

A
f 3−i,i
x2 ,y2

(ξ)dξ, (3.13)

G3−i,i
layer=

i

2π

∫ +∞

−∞
ei(x1−y1)ξ g3−i,i

x2 ,y2
(ξ)dξ, (3.14)

and

f i,i
x2,y2

(ξ)=

[

B(µi−µ3−i)

µi(µ1+µ2)
− (µ1+µ2)ǫ3−i

µi

]

eiµi(x̃2+ỹ2)+

+
Ci

µi

[

eiµi(4M̃2−(ỹ2+x̃2)+)−eiµi(2M̃2−(ỹ2)++(x̃2)+)

−eiµi(2M̃2+(ỹ2)+−(x̃2)+)
]

, (3.15)

gi,i
x2 ,y2

(ξ)=
2eiµi(x̃2+ỹ2)+

µ1+µ2
, (3.16)

f 3−i,i
x2,y2

(ξ)=
Bei(µi(ỹ2)++µ3−i(x̃2)+)

µ1+µ2
+ei(µi(2M̃2−(ỹ2)+)+µ3−i(2M̃2−(x̃2)+))

−ei(µi(2M̃2−(ỹ2)+)+µ3−i(x̃2)+)−ei(µi(ỹ2)++µ3−i(2M̃2−x̃+2 )), (3.17)

g3−i,i
x2 ,y2

(ξ)=
ei(µi(ỹ2)++µ3−i(x̃2)+)

µ1+µ2
. (3.18)
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Note that G
i,j
layer represents the exact layered medium Green function Gk1,k2

(x,y) when

x∈Ωi and y∈Ωj, i, j=1,2 [26]. In other words, G
i,j
layer is the solution to Eq. (3.1) but without

truncation G = 0 on x2 =±M2. In this sense, G
i,j
res can be taken as the residual term for

the layered medium Green function due to the horizontal PML truncation. As G(x,y) is
only formally defined in Eq. (3.10), we need to verify that the integrals above, including

both G
i,j
layer and G

i,j
res are well-defined when σ̄2>0. They depend on the properties of A in

Eq. (3.7) and f
i,j
x2 ,y2

and g
i,j
x2 ,y2

for i, j=1,2, which will be studied in the following.

3.2 Properties of A

We start with two technical lemmas. Proofs are given in Appendices A and B.

Lemma 3.1. For any a>0, the function

F(x1,x2)=(1−e−2ax1)
(

1−e−
2x2

a
)

−4e−ax1− x2
a |sinx1sinx2|,

defined in the domain {(x1,x2) : x1 ≥0,x2 ≥0} is always nonnegative, and F(x1,x2)=0 if and
only if x1x2=0.

Lemma 3.2. Suppose a,b≥0, then

∣

∣

∣

∣

∣

eiµ j(a+ib)−1

µj

∣

∣

∣

∣

∣

≤ 4

|µ1+µ2|
+

√

k2
2−k2

1

|µ1+µ2|
|a+ib|, j=1,2

for all ξ∈C−+∪C+−. Here we take the limit value for the left part when ξ=±k1,±k2.

To study the property of A in Eq. (3.7), we first note that A can be regarded as a func-
tion of µj, j=1,2, or a function of ξ. Due to the relations among ξ,µ1, and µ2, these nota-
tions are all equivalent. In the following, we may use all the three notations: A(µj), j=1,2,
or A(ξ), depending on which one is more convenient.

Lemma 3.3. There are exactly four roots for A(ξ) on the real axis, namely,

ξ=±k1, ξ=±k2.

Furthermore, A(ξ) 6=0 for ξ on the imaginary axis.

Proof. We first prove the case when ξ ∈R. Since A(ξ)= A(−ξ), consider ξ > 0 only. We
claim that A does not have any root for ξ∈ [0,k1)∪(k2,∞). Otherwise, suppose A(ξ1)=0
for ξ1< k1 and A(ξ2)=0 for ξ2> k2. Since ξ 6= kj , j=1,2, we have ǫj(ξ) 6=1. Therefore,

A(ξ j)

(1−ǫ1)(1−ǫ2)
=

1+ǫ1(ξ j)

1−ǫ1(ξ j)
µ1(ξ j)+

1+ǫ2(ξ j)

1−ǫ2(ξ j)
µ2(ξ j)=0 (3.19)
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can be rewritten as

(1−|ǫ1(ξ j)|2)+2Im(ǫ1(ξ j))i

|1−ǫ1(ξ j)|2
µ1(ξ j)+

(1−|ǫ2(ξ j)|2)+2Im(ǫ2(ξ j))i

|1−ǫ2(ξ j)|2
µ2(ξ j)=0 (3.20)

for j = 1,2. Since µ2(ξ1)> µ1(ξ1)> 0 and µ1(ξ2)(−i)> µ2(ξ2)(−i)> 0, the real part of
left-hand side of Eq. (3.20) for j=1 is strictly positive and the imaginary part of left-hand
side of Eq. (3.20) for j=2 is also strictly positive. Neither is possible.

Now, we claim that there is no root in (k1,k2). Otherwise, suppose A(ξ0) = 0 for

ξ0∈(k1,k2). Then, µ1=
√

ξ2
0−k2

1i and µ2=
√

k2
2−ξ2

0. Denote c=
√

ξ2
0−k2

1>0,d=
√

k2
2−ξ2

0>0.

Then,

0=A(ξ0)=(1−ǫ2)(1+ǫ1)ci+(1−ǫ1)(1+ǫ2)d

=(1−ǫ1ǫ2)(ci+d)+(ǫ1−ǫ2)(ci−d).

Therefore, |1−ǫ1ǫ2|2= |ǫ1−ǫ2|2, which is equivalent to

(

1−|ǫ1|2
)(

1−|ǫ2|2
)

+4Im(ǫ1)Im(ǫ2)=0. (3.21)

Note that ǫ1= e−2cM2 e−2cσ̄2i and ǫ2= e−2dσ̄2 e2dM2i. Eq. (3.21) becomes

(1−e−4cM2)(1−e−4dσ̄2)−4e−2cM2−2dσ̄2 sin(2cσ̄2)sin(2dM2)=0. (3.22)

Now, by choosing a= M2/σ̄2 > 0, x1 = 2cσ̄2 ≥ 0, and x2 = 2dM2 ≥ 0 in Lemma 3.1, we see
that

(1−e−4cM2)(1−e−4dσ̄2)−4e−2cM2−2dσ̄2 sin(2cσ̄2)sin(2dM2)≥0,

where the equality holds only when cd=0, which contradicts the choice of ξ0.

Finally, since µ1,µ2>0 when ξ is on the imaginary axis, the real part of left-hand side
of Eq. (3.20) is strictly positive, which implies that A(ξ) 6=0.

Proposition 3.1. There is no zero point for A(ξ) in C−+∪C+−.

Proof. Since A(−ξ)=A(ξ), without loss of generality, we assume ξ∈C−+, in which case
µj ∈C++ and |ǫj|<1, for j=1,2. Hence, the function

f (µ1)=
A(µ1)

(1−ǫ1)(1−ǫ2)

with µ2=
√

k2
2−k2

1+µ2
1, is holomorphic in C++. We now show that f (µ1) 6=0 for µ1∈C++.

Lemma 3.3 indicates that on the boundary of C++, f (µ1) has only two roots, i.e. 0

and
√

k2
2−k2

1i. For sufficiently small ε> 0 and for sufficiently large r> 0, we define the
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Figure 2: The integral contour Cr
ε (red curve).

counter-clockwise oriented closed curve Cr
ε , where Cr

ε is the boundary of the region Dr
ε =

Dr\(Dε
1∪Dε

2). As shown in Fig. 2, the regions Dε
1, Dε

2 and Dr are given by



















Dε
1=
{

aeiθ ∈C : 0< a≤ ε, 0≤ θ≤π/2
}

,

Dε
2=
{
√

k2
2−k2

1i+aeiθ ∈C : 0< a≤ ε,−π/2≤ θ≤π/2
}

,

Dr =
{

aeiθ ∈C : 0≤ a≤ r, 0≤ θ≤π/2
}

.

We show that for sufficiently large r, f (µ1) must have at most finite number of zeros
in Dr. In fact, when |µ1|= r and r→∞, we notice

|µ1−µ2|=
∣

∣

∣

∣

k2
2−k2

1

µ1+µ2

∣

∣

∣

∣

≤ k2
2−k2

1

|µ1|
→ 0,

|ǫ1|= |eireiθ(M2+iσ̄2)|= e−r(M2sinθ+σ̄2cosθ) → 0,

which implies

lim
r→∞

| f (µ1)|= lim
r→∞

|(1−ǫ1ǫ2)(µ1+µ2)+(ǫ1−ǫ2)(µ1−µ2)|

= lim
r→∞

|2µ1|=∞. (3.23)

Therefore, f (µ1) cannot be zero outside Dr for sufficiently large r. Now, suppose there
is a sequence {µ1,n}∞

n=1 such that f (µ1,n)=0 and limn→∞ µ1,n =µ1,∗∈Dr. Then, µ1,∗ must
be on the boundary of Dr, since otherwise the analyticity indicates that f (µ1)≡0 every-
where inside Dr, which is a contradiction. By Lemma 3.3, it leads us to the following two

situations: µ1,∗=0 or µ1,∗=
√

k2
2−k2

1i. If µ1,∗=0, then

0= lim
n→∞

Re f (µ1,n)=
σ̄2

|M̃2|2
+

1−e−4
√

k2
2−k2

1σ̄2

∣

∣1−e2i
√

k2
2−k2

1M̃2
∣

∣

2

√

k2
2−k2

1 >0,

which is a contradiction. One similarly shows the contradiction for the other case.
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Thus, we can choose sufficiently small ε and sufficiently large r so that all the zeros of
f (µ1) are contained inside the curve Cr

ε . By the argument principle, the total number of
zeros equals to

1

2πi

∫

Cr
ε

f ′(µ1)

f (µ1)
dµ1, (3.24)

which evaluates the total change in the argument of f (µ1) as µ1 travels around Cr
ε .

By Eqs. (3.19) and (3.20), we see that

f (µ1)=
(1−|ǫ1|2)+2Im(ǫ1)i

1+|ǫ1|2−2Re(ǫ1)
µ1+

(1−|ǫ2|2)+2Im(ǫ2)i

1+|ǫ2|2−2Re(ǫ2)
µ2. (3.25)

We now analyze the change of argument of f (µ1) on Cr
ε part by part and show that

f (µ1) /∈C−− for r sufficiently large and ε sufficiently small.

1. On the real-axis part of Cr
ε , since µ2 is also real, which implies Re( f (µ1))>0.

2. When µ1= reiθ , 0≤ θ≤π/2, it holds f (µ1)∼2µ1 as r→∞.

3. When µ1=yi for y∈[
√

k2
2−k2

1+ε,r], since µ2
1<k2

2−k2
1 and µ2=

√

y2−k2
2+k2

1i, it holds

Im( f (µ1))>0.

4. When µ1 ∈ ∂Dε
1 = {εeiθ : 0 ≤ θ ≤ π/2}, we can make ε sufficiently small such that

f (µ1) /∈C−− as limε→0+ Re( f (µ1))= limµ1→0Re( f (µ1))>0.

5. On the boundary of Dε
2, one similarly has f (µ1) /∈C−− since limε→0+ Im f (µ1)>0.

6. On the line segment µ1=yi for y∈ [ε,
√

k2
2−k2

1−ε], since µ2=
√

k2
2−k2

1−y2, it holds

f (µ1)=
2e−2yM2 sin(2yσ̄2)y

1+e−4yM2−2e−2yM2 cos(2yσ̄2)
+

(1−e−4µ2σ̄2)µ2

1+e−4µ2σ̄2−2e−2µ2σ̄2 cos(2µ2M2)

+

(

2e−2µ2σ̄2 sin(2µ2M2)µ2

1+e−4µ2σ̄2−2e−2µ2σ̄2 cos(2µ2M2)
+

(1−e−4yM2)y

1+e−4yM2 −2e−2yM2 cos(2yσ̄2)

)

i.

We claim f (µ1) /∈C−−, otherwise we have

(1−e−4µ2σ̄2)µ2 ·(1−e−4yM2)y≤2e−2yM2 |sin(2yσ̄2)|y·2e−2µ2 σ̄2 |sin(2µ2M2)|µ2,

which is equivalent to

(1−e−4µ2σ̄2)(1−e−4yM2)−4e−2(yM2+µ2σ̄2)|sin(2yσ̄2)||sin(2µ2M2)|≤0,

but this is impossible as Lemma 3.1 indicates that the left-hand side is strictly posi-
tive when y>0.
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To sum up, we have shown that f (µ1) can not attain the region C−− on Cr
ε . Thus,

the total change of argument of f as µ1 travels around Cr
ε must be 0. Consequently, by

the argument principle and by Eq. (3.23), f (µ1) has no root in C++, which completes the
proof.

As a corollary, we obtain the following result.

Corollary 3.1. The eigenvalue problem



















1

α2

d

dx2

(

1

α2

dφ

dx2

)

+k2φ= ξ2φ, x2∈ (−M2,M2),

[φ]=0, [φ′(x2)]=0 on x2=0,

φ=0 on x2=±M2

(3.26)

has no eigenvalue ξ in C−+∪C+−.

Proof. Suppose there exists an eigenvalue ξ∈C−+∪C+− with its associated eigenfunction
φ 6=0. For the two-layered medium, φ can be written in the form

φ=

{

c1eiµ1 x̃2+c2e−iµ1 x̃2 , x2>0,

d1e−iµ2 x̃2+d2eiµ2 x̃2 , x2<0.
(3.27)

The boundary condition and interface conditions in Eq. (3.26) give rise to

{

(1−ǫ1)c1−(1−ǫ2)d1 =0,

µ1(1+ǫ1)c1+µ2(1+ǫ2)d1=0.

Since φ 6= 0, the linear system above must have a nonzero solution, which implies the
determinant

0=(1−ǫ1)µ2(1+ǫ2)+(1−ǫ2)(1+ǫ1)µ1=A(ξ).

It indicates that A(ξ) has a root in C−+∪C+−, which is a contradiction to Proposition 3.1.
The proof is complete.

Remark 3.1. Corollary 3.1 gives a stronger result in comparison with [32,Proposition A.1],
in which σ̄2 was assumed to be sufficiently large.

We now give the properties of A at µj =0 with j=1,2.

Lemma 3.4. The function A(µj) has a simple zero at µj =0, j=1,2. In particular, it holds

∣

∣A′(µj)|µ j=0

∣

∣≥2
√

k2
2−k2

1min(M2,σ̄2)
(

1−e−2
√

k2
2−k2

1 min(M2,σ̄2)
)

, j=1,2. (3.28)
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Proof. We prove the case j=1 only since for j=2, the proof is similar. We denote by A(0)
and A′(0) the functions A(µ1) and A′(µ1) evaluated at µ1 =0, respectively. It holds that
A(0)=0 and

A′(0)=(2−2iM̃2µ2)−(2+2iM̃2µ2)ǫ2.

Since iM̃2µ2 =
√

k2
2−k2

1(−σ̄2+iM2) ∈ C−+, we have |2−2iM̃2µ2|> |2+2iM̃2µ2|, which

yields

|A′(0)|>
∣

∣2+2iM̃2µ2

∣

∣·
∣

∣1−|ǫ2|
∣

∣>2
√

k2
2−k2

1M2

(

1−e−2
√

k2
2−k2

1σ̄2

)

.

The proof is complete.

By combining all the properties above, we obtain a lower bound of A(ξ) in C+−∪C−+.

Proposition 3.2. For any z∈C++ with |z|. |M̃2|, it holds

max
{

|µ2(e
iµ1z−1)|,|µ1(e

iµ2z−1)|
}

.

∣

∣

∣

∣

µ1µ2

µ1+µ2

∣

∣

∣

∣

. |A(ξ)|

for all ξ∈C+−∪C−+.

Proof. By Lemma 3.2, we only need to show the estimate
∣

∣

∣

∣

µ1(ξ)µ2(ξ)

µ1(ξ)+µ2(ξ)

∣

∣

∣

∣

. |A(ξ)|.

We prove by contradiction. Assume there exists a sequence {ξn}∞
n=1 ∈C+−∪C−+ with

ξn → ξ0 as n→∞, such that

lim
n→∞

∣

∣

∣

∣

(µ1(ξn)+µ2(ξn))A(ξn)

µ1(ξn)µ2(ξn)

∣

∣

∣

∣

=0.

Consider two cases.

1. If |ξ0|<+∞, then we claim that ξ0 must be one of the four values ±k1,±k2 since
otherwise we get A(ξ) = 0 for ξ = ξ0, which is in contradiction with Proposi-
tion 3.1 and Lemma 3.3. However, even if ξ0 ∈ {±k1,±k2}, we can immediately
get A′(µ1)|µ1=0=0 or A′(µ2)|µ2=0=0, which is in contradiction with Lemma 3.4.

2. If |ξ0|=+∞, then one easily gets that ǫj →0 since M2, σ̄2>0 and

µj,n =
√

k2
j −ξ2

n →
√

ξ2
0i∈C

++.

Consequently,

lim
n→∞

(µ1,n+µ2,n)A(ξn)

µ1,nµ2,n
=4,

which is also a contradiction.
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3.3 Properties of f
i,j
x2,y2

, i, j=1,2

In order to study f
i,j
x2 ,y2

, we first give a decomposition of f
i,j
x2 ,y2

, i, j=1,2. By direct verifica-

tion, f
i,j
x2 ,y2

(ξ) with x∈Bi
ex and y∈B

j
ex for i, j=1,2 can be decomposed as follows:

f
i,j
x2,y2

(ξ)=
2

∑
l=1

f
i,j;l
x2 ,y2

(ξ)eiµl M̃2 ,

where

f i,i;i
x2 ,y2

(ξ)=

[

2(ǫ3−i−1)+
4µ3−i

µ1+µ2

]

eiµi(M̃2+(x̃2)++(ỹ2)+)−
[

(ǫ3−i−1)+
(1+ǫ3−i)µ3−i

µi

]

×
[

eiµi(M̃2+(x̃2+ỹ2)+)+eiµi(3M̃2−(x̃2+ỹ2)+)

−eiµi(M̃2−(ỹ2)++(x̃2)+)−eiµi(M̃2+(ỹ2)+−(x̃2)+)
]

, (3.29)

f i,i;3−i
x2 ,y2

(ξ)=− 4µ3−i

µ1+µ2
eiµi((x̃2)++(ỹ2)+)+iµ3−iM̃2 , (3.30)

f 3−i,i;i
x2 ,y2

(ξ)=
µ3−i−µi

µ1+µ2
ei(µi(M̃2+(ỹ2)+)+µ3−i(x̃2)+)−ei(µi(M̃2−(ỹ2)+)+µ3−i(x̃2)+), (3.31)

f 3−i,i;3−i
x2 ,y2

(ξ)=

(

ǫi+
µi−µ3−i

µ1+µ2

)

ei(µi(ỹ2)++µ3−i(M̃2+(x̃2)+))

+ei(µi(2M̃2−(ỹ2)+)+µ3−i(M̃2−(x̃2)+))−ei(µi(ỹ2)++µ3−i(M̃2−(x̃2)+)) (3.32)

for i=1,2. Based on the above decompositions, we investigate the relation between A(ξ)

and f
i,j;l
x2,y2

(ξ) for i, j,l=1,2 in the following lemma.

Lemma 3.5. For ξ∈C+−∪C−+ and i, j,l=1,2, it holds

∣

∣ f
i,j;l
x2 ,y2

(ξ)
∣

∣.
|A|
|µi|

,
∣

∣∂x2 f
i,j;l
x2,y2

(ξ)
∣

∣. |A|,

where x∈Bi
ex,y∈B

j
ex.

Proof. We prove j=1 only. According to Eq. (3.29) and Proposition 3.2, we see that

∣

∣ f 1,1;1
x2 ,y2

∣

∣. |ǫ2−1|+ |µ2|
|µ1+µ2|

+
|µ2|
|µ1|

∣

∣eiµ1(M̃2+x̃2+ỹ2)+eiµ1(3M̃2−x̃2−ỹ2)

−eiµ1(M̃2−ỹ2+x̃2)−eiµ1(M̃2+ỹ2−x̃2)
∣

∣.
|A|
|µ1|

.

Similarly, one obtains that |∂x2 f 1,1;1
x2,y2

|. |A|. The estimates for f 1,1;2
x2 ,y2

can be obtained easily
by Proposition 3.2. According to Eq. (3.31) and Proposition 3.2, we see that

∣

∣ f 2,1;1
x2 ,y2

∣

∣.
|µ1|

|µ1+µ2|
+
∣

∣eiµ1(M̃2+y2)−eiµ1(M̃2−y2)
∣

∣.
|A|
|µ2|

,
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and Eq. (3.32) leads to

∣

∣ f 2,1;2
x2 ,y2

∣

∣. |ǫ1−1|+ |µ1|
|µ1+µ2|

+
∣

∣eiµ1(2M̃2−ỹ2)−eiµ1 ỹ2
∣

∣.
|A|
|µ2|

.

The estimates for all the other cases can be analyzed similarly.

3.4 Existence of the Green function for the waveguide problem

With the properties of A and f
i,j
x2 ,y2

at our disposal, we are now ready to show the Green
function for the waveguide problem (3.1) is well defined.

Lemma 3.6. For any x,y∈R×((−M2,0)∪(0,M2)), let ρ= |x1−y1|. The integrals

I
i,j
1 (x1, x̃2;y1,ỹ2)=

∫ +∞

−∞

ei(x1−y1)ξ

A
f

i,j
x2 ,y2

(ξ)dξ, (3.33)

I
i,j
2 (x1, x̃2;y1,ỹ2)=

∫ +∞

−∞
ei(x1−y1)ξ g

i,j
x2 ,y2

(ξ)dξ (3.34)

have the following properties:

(i) They are well-defined as improper integrals.

(ii) They solve the following Helmholtz equations:

∂2
x1

I
i,j
l +∂2

x̃2
I

i,j
l +k2

i I
i,j
l =0, l=1,2.

(iii) Their integral contour can be changed such that

I
i,j
1 =

(

∫ 0

+∞i
+
∫ +∞

0

)

eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ,

I
i,j
2 =

(

∫ 0

+∞i
+
∫ +∞

0

)

eiρξ g
i,j
x2 ,y2

(ξ)dξ.

(iv) They satisfy the radiation condition, for l=1,2, i.e.

(

∂ρ I
i,j
l −iki I

i,j
l

)

=O(ρ−1) as ρ → ∞.

(v) They satisfy the asymptotic properties

I
i,j
1 =O

(

ρ−
1
2
)

, I
i,j
2 =O(ρ−1) as ρ → ∞.
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Proof. For (i) and (ii), notice that f
i,j
x2 ,y2

and A are even functions of ξ, we obtain

I
i,j
1 =

∫ ∞

−∞

eiρξ

A
f

i,j
x2,y2

(ξ)dξ.

By Lemma 3.5, it holds

∣

∣

∣

∣

eiρξ

A
f

i,j
x2,y2

(ξ)

∣

∣

∣

∣

.
2

∑
l=1

|eiµl M̃2||
|µi|

≤
2

∑
l=1

e−pl σ̄2−ql M2

√

|k2
i −ξ2|

,

in which we let µl = pl+iql for l=1,2. As ξ→∞, one sees from the estimate above that

∣

∣

∣

∣

eiρξ

A
f

i,j
x2 ,y2

(ξ)

∣

∣

∣

∣

=O
(

e−|ξ|M2

|ξ|

)

.

On the other hand, if |ξ|→ ki , it holds that
∣

∣

∣

∣

eiρξ

A
f

i,j
x2 ,y2

(ξ)

∣

∣

∣

∣

=O
(

∣

∣ki−|ξ|
∣

∣

− 1
2

)

.

Consequently, the integral I
i,j
1 exists as an improper integral for i, j= 1,2. One similarly

proves the identities

∂m
x1

∂n
x̃2

I
i,j
1 =

∫ +∞

−∞
(iξ)m(iµi)

n eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ

for even number m,n∈N and i, j= 1,2 are well-defined as an improper integral. In the
end, we get

(

∂2
x1
+∂2

x̃2

)

I
i,j
1 =

∫ +∞

−∞

(

(iξ)2+(iµi)
2
) eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ=−k2
i I

i,j
1 .

The case for I
i,j
2 can be similarly analyzed.

(iii). On
Cr =

{

ξ∈C : ξ= reiθ ,π/2< θ<π
}

,

since limr→∞ µl/(−ξi)=1 for l=1,2, we have

limsup
r→∞

|r2eiµl M̃2 |= limsup
r→∞

∣

∣r2eξM̃2
∣

∣= limsup
r→∞

r2ercos(θ)σ̄2−rsin(θ)M2

≤ limsup
r→∞

r2e−rmin(σ̄2,M2)=0.

Thus, for sufficiently large r, we could make |eiµl M̃2 |.1/r2, so that

∣

∣

∣

∣

eiρξ

A
f

i,j
x2 ,y2

(ξ)

∣

∣

∣

∣

.
1

r2
.
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Therefore,

lim
r→∞

∫

Cr

eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ=0.

Consequently, by Cauchy’s theorem, we get

I
i,j
1 =

(

∫ 0

+∞i
+
∫ ∞

0

)

eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ.

On the other hand, since it holds

limsup
r→∞

∣

∣

∣

∣

ξg
i,j
x2 ,y2

eξ(|x2 |+|y2|)

∣

∣

∣

∣

h limsup
r→∞

∣

∣

∣

∣

∣

ξeiµi

√
x̃2

2+iµ j

√
ỹ2

2

eξ(|x2 |+|y2|)(µ1+µ2)

∣

∣

∣

∣

∣

h limsup
r→∞

∣

∣

∣

∣

∣

eξ(
√

x̃2
2+
√

ỹ2
2)

eξ(|x2|+|y2|)

∣

∣

∣

∣

∣

.1

for sufficiently large r, we can make

|gi,j
x2 ,y2

|. 1

r
ercosθ(|x2|+|y2|), ξ= reiθ , θ∈ (π/2,π).

Thus,
∣

∣

∣

∣

∫

Cr

∣

∣

∣
eiρξ g

i,j
x2 ,y2

(ξ)
∣

∣

∣
dξ

∣

∣

∣

∣

.
∫ π

π/2
ercosθ(|x2|+|y2|)dθ.

∫ π/2

0
e−rsinθ(|x2|+|y2|)dθ

≤
∫ θ0

0
e−rθ/2(|x2|+|y2|)dθ+

∫ π/2

θ0

e−rsinθ(|x2|+|y2|)dθ

.
1

r(|x2|+|y2|)
+e−rsinθ0(|x2|+|y2|) → 0,

as r→∞, where θ0 > 0 is a sufficiently small constant such that sinθ > θ/2 for θ ∈ (0,θ0).
In the end, Cauchy’s theorem indicates that

I
i,j
2 =

(

∫ 0

+∞i
+
∫ ∞

0

)

eiρξ g
i,j
x2 ,y2

(ξ)dξ.

(iv). First, we observe that on the integral path ξ :+∞i→0→+∞, the function

hl
i,j(µl) :=

µi(µl) f
i,j
x2,y2

(
√

k2
l −µ2

l

)

A(µl)

has a removable singularity at µl=0 and hence can be extended as a holomorphic function
of µl in the neighborhood of µl =0 for l=1,2. Thus, we decompose

(∂ρ−iki)I
i,j
1 =

(

∫ 0

+∞i
+
∫ ∞

0

)

i(ξ−ki)
eiρξ

A
f

i,j
x2,y2

(ξ)dξ

=

(

∫ 0

+∞i
+
∫ k1−ǫ0

0
+
∫ k2−ǫ0

k1+ǫ0

+
∫ +∞

k2+ǫ0

)

i(ξ−ki)
eiρξ

A
f

i,j
x2,y2

(ξ)dξ

−
2

∑
l=1

∫ kl+ǫ0

kl−ǫ0

eiρξ

√

ξ−ki

ki+ξ
hl

i,j

(
√

k2
l −ξ2

)

dξ,
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where ǫ0 is a sufficiently small positive constant. On the positive imaginary axis, from
Lemma 3.5, we have the following estimate:

∣

∣

∣

∣

∫ 0

+∞i
i(ξ−ki)

eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

0
(ti−ki)

e−ρt

A(ti)
f

i,j
x2,y2

(ti)dt

∣

∣

∣

∣

.

∫ +∞

0
(t+ki)e

−tρdt.ρ−1.

When ξ ∈ (0,k1−ǫ0)∪(k1+ǫ0,k2−ǫ0)∪(k2+ǫ0,+∞), (ξ−ki) f
i,j
x2 ,y2

(ξ)/A(ξ) is a smooth
function of ξ. Hence, using integration by parts, we obtain

∣

∣

∣

∣

(

∫ k1−ǫ0

0
+
∫ k2−ǫ0

k1+ǫ0

+
∫ +∞

k2+ǫ0

)

i(ξ−ki)
eiρξ

A
f

i,j
x2 ,y2

(ξ)dξ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

(ξ−ki) f
i,j
x2 ,y2

(ξ)

A(ξ)

eiρξ

ρ

)
∣

∣

∣

∣

k1−ǫ0

0

∣

∣

∣

∣

k2−ǫ0

k1+ǫ0

∣

∣

∣

∣

+∞

k2+ǫ0

∣

∣

∣

∣

∣

+
1

ρ

(

∫ k1−ǫ0

0
+
∫ k2−ǫ0

k1+ǫ0

+
∫ +∞

k2+ǫ0

)
∣

∣

∣

∣

(

(ξ−ki) f
i,j
x2 ,y2

(ξ)

A(ξ)

)′∣
∣

∣

∣

dξ.ρ−1,

where we note that f
i,j
x2,y2

(ξ) and its derivative decays exponentially as ξ→∞.

For the last part, it holds

∣

∣

∣

∣

∣

(

∫ k1+ǫ0

k1−ǫ0

+
∫ k2+ǫ0

k2−ǫ0

)

eiρξ

√

ξ−ki

ki+ξ

µi f
i,j
x2 ,y2

A
dξ

∣

∣

∣

∣

∣

≤
2

∑
l=1

∣

∣

∣

∣

∣

eiρξ

ρ

√

ξ−ki

ki+ξ

µi f
i,j
x2,y2

A

∣

∣

∣

∣

kl+ǫ0

kl−ǫ0

∣

∣

∣

∣

∣

+
1

ρ

∫ kl+ǫ0

kl−ǫ0

∣

∣

∣

∣

∣

∣

(
√

ξ−ki

ki+ξ

)′

hl
i,j

(
√

k2
l −ξ2

)

∣

∣

∣

∣

∣

∣

dξ

+
1

ρ

∫ kl+ǫ0

kl−ǫ0

∣

∣

∣

∣

∣

√

ξ−ki

ki+ξ
hl

i,j

′(√
k2

l −ξ2
) ξ
√

k2
l −ξ2

∣

∣

∣

∣

∣

dξ

.
1

ρ
+

1

ρ

2

∑
l=1

∫ kl+ǫ0

kl−ǫ0

dξ
√

|ξ−kl |
.ρ−1.

Consequently, we get

(∂ρ−iki)I
i,j
1 =O(ρ−1) as ρ → ∞.

The radiation condition for I
i,j
2 can be similarly proven.
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(v). We make use of the stationary phase method and consider I
i,j
1 first. As shown in

part (4), we easily get that

∣

∣

∣

∣

(

∫ 0

+∞i
+
∫ k1−ǫ0

0
+
∫ k2−ǫ0

k1+ǫ0

+
∫ +∞

k2+ǫ0

)

f
i,j
x2 ,y2

(ξ)

A(ξ)
eiξρdξ

∣

∣

∣

∣

=O(ρ−1) as ρ → ∞.

In the neighborhood of ξ= ki , it holds

∣

∣

∣

∣

∣

∣

∫ ki+ǫ0

ki−ǫ0

eiξρ

√

k2
i −ξ2

hi
i,j

(
√

k2
i −ξ2

)

dξ

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ θǫ0,1

0
eiρki cosθhi

i,j(ki sinθ)dθ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ θǫ0,2

0
eiρki secθhi

i,j(ki tanθi)secθdθ

∣

∣

∣

∣

=O
(

ρ−
1
2
)

as ρ → ∞,

where θǫ0 ,1 = arccos(1−ǫ0/ki), and θǫ0,2 = arccos((1+ǫ0/ki)
−1). Here, we have used

the conclusion in [39, Proposition 3, p. 334] for the last inequality since for sufficiently
small ǫ0, the domain of integration contains only one stationary point, that is, θ=0.

In the neighborhood of ξ= k3−i, we use integration by parts to obtain that

∣

∣

∣

∣

∣

∣

∫ k3−i+ǫ0

k3−i−ǫ0

eiρξ

√

k2
i −ξ2

hi
i,j

(
√

k2
i −ξ2

)

dξ

∣

∣

∣

∣

∣

∣

≤O(ρ−1) as ρ → ∞.

Consequently, it implies I
i,j
1 =O(ρ−1/2), as ρ→∞.

For I
i,j
2 , since the integrand itself is smooth, one easily obtains that I

i,j
2 =O(ρ−1) as

ρ→∞, which finishes the proof.

To conclude this section, we give the next theorem, which is a direct consequence of
Lemma 3.6.

Theorem 3.1. The Green function G(x,y) given in Eq. (3.10) is well-defined and solves the
problem (3.1)-(3.2). Furthermore, G satisfies the asymptotic property

G(x,y)=O
(

ρ−
1
2
)

as ρ= |x1−y1| → ∞.

4 Well-posedness of the scattering problem with UPML

truncation

In this section, we discuss how to construct the Green function for the fully uniaxial PML
truncated problem (2.5) by making use of the waveguide problem (3.1)-(3.2).
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4.1 Existence of the Green function with UPML

To study the Green function with rectangular PML truncation, we first analytically extend
the domain of G(x,y) of the waveguide problem (3.1)-(3.2) from x1,y1∈R to x̃1,ỹ1∈C++∪
C−− by the UPML coordinate transformation

x̃1= x1+i

∫ x1

0
σ

p
1 (t)dt, ỹ1=y1+i

∫ y1

0
σ

p
1 (t)dt,

where the absorbing function σ
p
1 along the x1-axis takes the form

σ
p
1 (x1)=

{

σ1(x1), |x1|≤M1,

σ1(x1−2nM1), (2n−1)M1< x1≤ (2n+1)M1, n∈Z\{0}.

One issue is that the real path used in Eqs. (3.11)-(3.14) is not usable to make the extension
since ei(x̃1−ỹ1)ξ blows up in one of the two cases ξ→±∞. To resolve this, we make use of
Lemma 3.6 by changing the real path to

EXT : +∞i → 0 → +∞, (4.1)

so that we can define, for instance,

G1,1
res(x̃,ỹ)=−Φ

(

k1,(x̃1,2M̃2− x̃2);(ỹ1,ỹ2)
)

+
i

4π

∫

EXT

eiξ(x̃1−ỹ1)+

A
f 1,1
x2,y2

(ξ)dξ, (4.2)

where we recall (a)+ =
√

a2 is defined in the branch with a nonnegative real part. One

similarly defines the other terms G
i,j
res and G

i,j
layer for i, j=1,2.

Consequently, we can make an analytic extension of G(x,y) by defining

G̃(x,y)=G
i,j
layer(x̃,ỹ)+G

i,j
res(x̃,ỹ) (4.3)

for x∈Ωi,y∈Ωj. By following a similar argument as in Lemma 3.6, we can show that G̃
is well-defined and satisfies the modified Helmholtz equation.

Theorem 4.1. G̃ solves the following problem:























∂

∂x1

(

α2

α
p
1

∂G̃

∂x1

)

+
∂

∂x2

(

α
p
1

α2

∂G̃
∂x2

)

+α
p
1 α2k2G̃=−δ(x−y), x,y∈R×(−M2,M2),

[G̃]=0, [∂x2 G̃]=0 on x2=0,

G̃=0 on x2=±M2,

(4.4)

where α
p
1(x1)=1+iσ

p
1 (x1).
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To construct the Green function for Eq. (2.5), we define an infinite series based on G̃

GPML(x,y)=
∞

∑
n=−∞

[

−G̃
(

x′+ne1,y
)

+G̃
(

x+ne1,y
)]

, x,y∈Bex, (4.5)

where x′=(2M1−x1,x2), and e1=(4M1,0). For n∈Z, define

a
x1 ,y1

2n =
(

4nM̃1+ x̃1− ỹ1

)

+
, a

x1 ,y1

2n+1=
(

(4n+2)M̃1− x̃1− ỹ1

)

+
, (4.6)

b
x2,y2

1 =(x̃2− ỹ2)+, b
x2 ,y2

2 =(x̃2+ ỹ2)+, b
x2,y2

3 =2M̃2−b
x2 ,y2

2 . (4.7)

By properly rearranging the terms in Eq. (4.5), we obtain that for x,y∈ Bi
ex, i= 1,2, it

holds

GPML(x,y)=Gi,i
layer(x̃,ỹ)+

i

4π

∫

EXT
eiξa

x1,y1
0

f i,i
x2,y2

(ξ)

A
dξ

+
i

4π

∞

∑
n=−∞,n 6=0

(−1)n
∫

EXT
eiξa

x1,y1
n

(

f i,i
x2 ,y2

(ξ)

A
+gi,i

x2 ,y2
(ξ)

)

dξ

+
i

4π

∞

∑
n=−∞,n 6=0

(−1)n
2

∑
j=1

H
(1)
0

(

ki

√

(

a
x1 ,y1
n

)2
+
(

b
x2,y2

j

)2
)

− i

4π

∞

∑
n=−∞

(−1)n H
(1)
0

(

ki

√

(

a
x1 ,y1
n

)2
+
(

b
x2 ,y2

3

)2
)

, (4.8)

and when x∈Bi
ex and y∈B3−i

ex (or vice versa),

GPML(x,y)=Gi,3−i
layer(x̃,ỹ)+

i

2π

∫

EXT
eiξa

x1,y1
0

f i,3−i
x2 ,y2

(ξ)

A
dξ

+
i

2π

∞

∑
n=−∞,n 6=0

(−1)n
∫

EXT
eiξa

x1,y1
n

(

f i,3−i
x2,y2

(ξ)

A
+gi,3−i

x2 ,y2
(ξ)

)

dξ. (4.9)

We now show that the two series in Eqs. (4.8) and (4.9) are absolutely convergent so that
the rearrangement of terms in Eq. (4.5) is well-defined, and that GPML is the Green func-
tion that satisfies Eq. (2.5). For this purpose, we need to estimate the terms in Eqs. (4.8)
and (4.9). Our first step is to extend their domain from C−+∪C+− to a region within
C++.

Lemma 4.1. There exists a constant δ∈ (0,1) such that A(ξ) 6=0 for any

ξ∈Eδ =
{

ξ∈C++ : Re(ξ)≤δk1, Im(ξ)≤δk1

}

.

Furthermore,
|µ1+µ2|. |A(ξ)| (4.10)

for any ξ∈Eδ.
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Proof. We first prove the existence of Eδ. Suppose otherwise there exist a sequence of
{δn}∞

n=1 with δn >0 and limn→∞ δn =0. A sequence of {ξn} with ξn ∈C++ and

max
(

Re(ξn), Im(ξn)
)

≤δnk1

such that limn→∞ A(ξn)= 0. As limn→∞ ξn = 0, we directly get A(0)= 0 which is in con-
tradiction with Lemma 3.3. Consequently, there must exist a box Eδ with δ>0 such that
A 6=0 for any ξ∈Eδ.

We now prove the estimate (4.10). Suppose there exists a sequence of {ξn}∞
n=1 with

limn→∞ ξn = ξ0∈Eδ such that

lim
n→∞

∣

∣

∣

∣

A(ξn)

µ1,n+µ2,n

∣

∣

∣

∣

=0,

where µl,n =
√

k2
l −ξ2

n. Since Reµ1,nReµ2,n, Imµ1,nImµ2,n ≥ 0, for sufficiently small δ> 0,

|µ1,n+µ2,n|≥
√

k2
2−k2

1>0 for ξ∈Eδ. We conclude that A(ξ0)=0, which is impossible due

to the choice of Eδ.

Lemma 4.2. For all n∈Z\{0}, l,m∈{0,1,2}, and x∈Bi
ex,y∈B

j
ex, i, j=1,2, it holds

∣

∣

∣

∣

∣

ξ lµm
i eiξa

x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

)
∣

∣

∣

∣

∣

.

(

ξ2
1+ξ2

2

)
l
2
(

k2
2+ξ2

1+ξ2
2

)
m
2

√

k2
2−k2

1

e−2|n|M1ξ2−2|n|σ̄1ξ1

for ξ= ξ1+iξ2 ∈Eδ, and
∣

∣

∣

∣

∣

ξ lµm
i eiξa

x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

)
∣

∣

∣

∣

∣

.

(

ξ2
1+ξ2

2

)
l
2
(

k2
2+ξ2

1+ξ2
2

)
m
2

|µi|
e−2|n|M1ξ2−2|n|σ̄1ξ1

for ξ= ξ1+iξ2 ∈∂C++, where ∂C++ consists of the positive real and imaginary axis.

Proof. For ξ= ξ1+iξ2∈∂C++, it holds
∣

∣

∣

∣

∣

f
i,j
x2,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

∣

∣

∣

∣

∣

.
1

|µi|
+

1

|µ1+µ2|
.

1

|µi|
.

In Eδ, since f
i,j
x2 ,y2

has no singularities, we use Lemma 4.1 to see that

∣

∣

∣

∣

∣

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

∣

∣

∣

∣

∣

.
1

√

k2
2−k2

1

.
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For any ξ= ξ1+iξ2∈Eδ∪∂C++, it holds
∣

∣eiξa
x1,y1
n
∣

∣. e−2|n|M1ξ2−2|n|σ̄1ξ1 ,
∣

∣ξ lµm
i

∣

∣≤
(

ξ2
1+ξ2

2

)
l
2 |µi|m ≤

(

ξ2
1+ξ2

2

)
l
2
(

k2
2+ξ2

1+ξ2
2

)
m
2 .

Consequently, the two estimates follow from these inequalities.

The following lemma shows the contribution from all the other terms except n=0 in
the infinite series GPML is exponentially small.

Lemma 4.3. For all n∈Z\{0} and l,m∈{0,1,2},
∣

∣

∣

∣

∣

∫

EXT
ξ lµm

i eiξa
x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

)

dξ

∣

∣

∣

∣

∣

.
(

e−2|n|M1δk1+e−2|n|σ̄1δk1
)

.

Proof. Define the following path:

Pδ : ξ∈+∞i → δk1i → δk1i+δk1 → δk1 → ∞.

As A 6=0 in Eδ, we get by Cauchy’s theorem that

∫

EXT
ξ lµm

i eiξa
x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2 ,y2

(ξ)

)

dξ

=
∫

Pδ

ξ lµm
i eiξa

x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2,y2

(ξ)

)

dξ.

By Lemma 4.2, we get the following estimates:
∣

∣

∣

∣

∣

∫

Pδ

ξ lµm
i eiξa

x1,y1
n

(

f
i,j
x2 ,y2

(ξ)

A
+g

i,j
x2,y2

(ξ)

)

dξ

∣

∣

∣

∣

∣

.
∫ +∞

δk1

ξ l
2

(

k2
2+ξ2

2

)
m
2 e−2|n|M1ξ2 dξ2+

∫ δk1

0
e−2|n|M1k1δe−2|n|σ̄1ξ1 dξ1

+
∫ δk1

0
e−2|n|σ̄1δk1 e−2|n|M1k1ξ2 dξ2+

∫ +∞

δk1

ξ l
1

(

k2
2+ξ2

1

)
m
2 e−2|n|σ̄1ξ1

∣

∣

∣

√

k2
i −ξ2

1

∣

∣

∣

dξ1

. e−2|n|M1δk1 +e−2|n|M1k1δ+e−2|n|σ̄1δk1 +e−2|n|σ̄1δk1 .

The proof is complete.

The next lemma gives properties of a
x1 ,y1
n and b

x2,y2

j .

Lemma 4.4. Suppose x,y∈Bi
ex for i=1,2. For any n∈Z\{0} and j=1,2,3,

Im
(√

(a
x1 ,y1
n )2+(b

x2,y2

j )2
)

≥ (2|n|−2)2σ̄1
√

(2|n|+2)2+4(M2/M1)2
. (4.11)
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Proof. It is easy to see that

Im
(

a
x1 ,y1
n

)

∈
[(

2|n|−2
)

σ̄1,(2|n|+2)σ̄1

]

,

Re
(

a
x1 ,y1
n

)

∈
[

(2|n|−2)M1,(2|n|+2)M1

]

,

Re
(

b
x2,y2

j

)

∈ [0,2M2],

Im
(

b
x2 ,y2

j

)

∈ [0,2σ̄2].

This and [16, Lemma 6.1] immediately give (4.11).

We now recall a lemma from [13].

Lemma 4.5. For any ν∈R,z∈C++, and Θ∈R such that 0<Θ≤|z|, we have

∣

∣H
(1)
ν (z)

∣

∣≤ e
−Im(z)

(

1− Θ2

|z|2
)

1
2
∣

∣H
(1)
ν (Θ)

∣

∣. (4.12)

Making use of Lemma 4.5 gives the following corollary.

Corollary 4.1. Suppose x,y∈Bi
ex for i=1,2. There exists an integer N>0 such that for all n≥N,

H
(1)
ν

(

ki

√

(

a
x1 ,y1
n

)2
+
(

b
x2 ,y2

j

)2
)

≤ e−nkiσ̄1
∣

∣H
(1)
ν (kiσ̄1)

∣

∣

for j=1,2,3 and for any ν∈R.

Proof. Eq. (4.11) in Lemma 4.4 indicates that

liminf
n→∞

Im

(

√

(

a
x1 ,y1
n

)2
+
(

b
x2,y2

j

)2
)

2|n|σ̄1
≥1,

so that for sufficiently large n, we have

∣

∣

∣

∣

√

(

a
x1 ,y1
n

)2
+
(

b
x2 ,y2

j

)2
∣

∣

∣

∣

≥ Im

(

√

(

a
x1 ,y1
n

)2
+
(

b
x2 ,y2

j

)2
)

≥
√

2|n|σ̄1 ≥ σ̄1.

The estimate immediately follows from Lemma 4.5.

Combining all the results above, we now show GPML is well-defined.

Theorem 4.2. It holds that

(1) The infinite series GPML defined in Eqs. (4.8) and (4.9) is absolutely convergent for any

x∈Bi
ex,y∈B

j
ex with x 6=y for i, j=1,2.
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(2) Suppose y∈ Bi
ex for i = 1,2. Then GPML(x,y)∈ H2(Bex\B(y,ε)) for any ε > 0, where

B(y,ε) denotes a disk centered at y with radius ε. Moreover,

GPML(x,y)−Φ(ki,x̃;ỹ)∈W2,∞(Bi
ex) :=

{

u(x) : u,∂xj
u,∂2

xjxl
u∈L∞(Bi

ex), j,l=1,2
}

.

(3) GPML solves the truncated PML problem (2.5).

Proof. (1) Lemma 4.3 with l =m= 0 and Corollary 4.1 with ν= 0 directly imply the
series in Eqs. (4.8) and (4.9) are absolutely convergent, which justify the rearrangement
in Eqs. (4.8) and (4.9) from Eq. (4.5).

(2) We can make use of the facts that x̃j∈W2,∞([−Mj,Mj]), Lemma 4.3 with 0≤l,m≤2
and Corollary 4.1 with ν=1,2 to obtain the results.

(3) The reason that GPML satisfies Eq. (2.5) based on the fact that G̃ satisfies Eq. (4.4)
and the differentiation of GPML can be exchanged with the summation in Eq. (4.5). The
interface condition is satisfied by construction.

We now verify the zero boundary condition in Eq. (2.5). On x2=±M2, GPML=0 since
G̃(x,y)=0. On x1=M1, we get

GPML(x,y)=
∞

∑
n=−∞

G̃(x+ne1,y)−
∞

∑
n=−∞

G̃(x′+ne1,y)

=
∞

∑
n=−∞

G̃
((

(4n+1)M1,x2

)

,y
)

−
∞

∑
n=−∞

G̃
((

(4n+1)M1,x2

)

,y
)

=0.

One similarly verifies that GPML(x,y)=0 on x1=−M1.

4.2 Well-posedness of the UPML problem

We are ready to show the well-posedness of the layered scattering problem (2.3) with
UPML.

Proof of Theorem 2.1. It is easy to see that a(ũ,v) in Eq. (2.4) satisfies the Gårding inequality
and thus is a Fredholm operator of index zero [33, Theorem 2.34]. Therefore, to prove the
existence, we only need to show the uniqueness. It suffices to show that the following
problem has only zero solution: Find w∈H1

0(Bex) such that

a(w,v)=0, ∀v∈H1
0(Bex). (4.13)

Since the coefficient A is Lipschitz, the regularity theory of elliptic equations implies that
w∈H2(Bex)∩H1

0(Bex). Clearly, w satisfies the following equation:

∇·(A∇w)+α1α2k2w=0 in B
j
ex, j=1,2. (4.14)
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We claim that w(y)=0 for any y∈B
j
ex, j=1 or 2. Let ǫ be so small that B(y,ǫ)⊂B

j
ex. Since

GPML(·,y) solves Eq. (2.5), its restriction on B
j,ǫ
ex =B

j
ex\B(y,ǫ) belongs to H2(B

j,ǫ
ex ). Clearly,

∇·
(

A∇GPML(·,y)
)

+α1α2k2GPML(·,y)=0 in B
j,ǫ
ex . (4.15)

Let ν
c =AT

ν and ν denotes the outer unit normal vector to ∂B(y,ǫ). It follows from the
second Green’s identity and Eqs. (4.14)-(4.15) that

0=
∫

∂B(y,ǫ)
∂ν

c wGPML(x,y)ds(x)−
∫

∂B(y,ǫ)
w∂ν

c GPML(x,y)ds(x), (4.16)

where ∂ν
c w=∇w ·νc. By Theorem 4.2, for y∈B

j
ex as ǫ→0,

∫

∂B(y,ǫ)
∂ν

c w
[

GPML(x,y)−Φ(kj,x̃;ỹ)
]

ds(x) → 0,

∫

∂B(y,ǫ)
w
[

∂ν
c GPML(·,y)−∂ν

c Φ(kj,x̃;ỹ)
]

ds(x) → 0.

On the other hand, for sufficiently small ǫ>0, w solves the PML-transformed Helmholtz
equation with wavenumber kj while Φ(kj,x̃;ỹ) is the associate PML-transformed free-
space Green function for medium kj [28], we see from the Green’s representation formula
[31, Proposition 3.2] that

w(y)=
∫

∂B(y,ǫ)

[

∂ν
c wΦ(kj,x̃;ỹ)−w∂ν

c Φ(kj,x̃;ỹ)
]

ds(x).

Consequently,

w(y)= lim
ǫ→0

∫

∂B(y,ǫ)
∂ν

c wGPML(x,y)ds(x)−
∫

∂B(y,ǫ)
w∂ν

c GPML(x,y)ds(x)=0

for all y ∈ B
j
ex, j = 1,2. The continuity then implies that w ≡ 0, which completes the

proof.

5 Conclusion

In this paper, we have shown that the layered medium scattering problem with UPML
truncation always possesses a unique solution for any positive UPML absorbing strength.
Our proof is based on the construction of the Green function for the layered medium
problem with UPML truncation. In particular, we show that the Green function always
exists within the UPML, regardless of the wavenumber and absorbing strength of UPML.
Our future work includes investigating the well-posedness for scattering problem with
obstacles, and the extension to multi-layered medium scattering problems, as well as the
analysis to Maxwell’s equations.
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Appendix A. Proof of Lemma 3.1

Clearly, by monotonicity and periodicity, if F(x1,x2)>0, then F(x1+mπ,x2+nπ)>0 for
any two integers m,n≥0. Therefore, we only need to study F(x1,x2) in the domain

D1={(x1,x2) : 0≤ x1, x2≤π}.

In fact, we can further reduce the domain D1 into

D2={(x1,x2) : 0≤ x1, x2≤π/2},

since sin(π−x1)=sinx1 and for any (x1,x2)∈D1\D2, either x1≥π−x1 or x2≥π−x2.
Now, we prove that if x1x2 6=0, then F(x1,x2)>0 in D2. Since sinx1(1−e−2x2/a)e−ax2>0,

it holds
F(x1,x2)

2sinx1(1−e−2x2/a)e−ax1
= f (x1;a)− 1

f (x2;a−1)
, (A.1)

where f (x1;a) is defined by

f (x1;a) :=
1−e−2ax1

2sin(x1)e−ax1
, x1∈ (0,π/2].

Since limx1→0 f (x1;a)= a, we let f (0;a)= a so that f is defined on [0,π/2]. We claim

f (x1;a)> f (0;a), x1∈ (0,π/2],

since one can easily check that for any a>0,

(1−e−2ax1)−2asinx1e−ax1 >0, x1∈ (0,π/2] .

Thus, we obtain
f (x1;a)> a, f (x2;a−1)> a−1, x1x2 6=0

such that

f (x1;a)− 1

f (x2;a−1)
> a− 1

a−1
=0.

Consequently, Eq. (A.1) implies that F(x1,x2)>0, when (x1,x2)∈D2 and x1x2 6=0, which
completes the proof since it is obvious that F(x1,x2)=0 if x1x2=0. �

Appendix B. Proof of Lemma 3.2

By elementary analysis, we see that for any c≥0 and d∈R,

∣

∣

∣

∣

e−c+id−1

−c+id

∣

∣

∣

∣

=

∣

∣

∣

∣

(1−e−c)2+2e−c(1−cosd)

c2+d2

∣

∣

∣

∣

1
2

≤
∣

∣

∣

∣

c2+e−cd2

c2+d2

∣

∣

∣

∣

1
2

≤1, (B.1)
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where limit is considered when c2+d2=0. Since Re(µj)≥0, we have |µ1−µ2|≤ |µ1+µ2|,
and hence by |µ1−µ2||µ1+µ2|= k2

2−k2
1 we conclude that

|µ1−µ2|≤
√

k2
2−k2

1≤|µ1+µ2|. (B.2)

Hence, it yields by (B.1) and (B.2) that

∣

∣

∣

∣

∣

(eiµ j(a+ib)−1)(µ1+µ2)

µj

∣

∣

∣

∣

∣

≤2|eiµ j(a+ib)−1|+|µ1−µ2|
∣

∣

∣

∣

∣

eiµ j(a+ib)−1

µj

∣

∣

∣

∣

∣

≤4+
√

k2
2−k2

1|a+ib|.

This completes the proof. �
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[37] C. Pérez-Arancibia and O. P. Bruno, High-order integral equation methods for problems of scat-

tering by bumps and cavities on half-planes, J. Opt. Soc. Am. A, 31(8):1738–1746, 2014.
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