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Abstract. The fluctuation of mRNA molecule numbers within an isogenic cell popu-
lation is primarily attributed to randomly switching between active (ON) and inactive
(OFF) periods of gene transcription. In most studies the waiting-times for ON or OFF
states are modeled as exponential distributions. However, increasing data suggest that
the residence durations at ON or OFF are non-exponential distributed for which the
traditional master equations cannot be presented. By combining Kolmogorov forward
equations with alternating renewal processes, we present a novel method to compute
the average transcription level and its noise by circumventing the bottleneck of master
equations under gene ON and OFF switch. As an application, we consider lifetimes of
OFF and ON states having Erlang distributions. We show that: (i) multiple steps from
OFF to ON force the oscillating transcription while multiple steps from ON to OFF
accelerate the transcription, (ii) the increase of steps between ON and OFF rapidly
reduces the transcription noise to approach its minimum value. This suggests that
a large number of steps between ON and OFF are not needed in the model to capture
the stochastic transcription data. Our computation approach can be further used to
treat a series of transcription cycles which are non-lattice distributed.

AMS subject classifications: 60K05, 34A35, 34A38, 92B05
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1 Introduction

In both prokaryotes and eukaryotes, gene transcription is the core process in the trans-
mission of genetic information, which flows from DNA to RNA to protein in single
cells [22]. The new in vivo RNA detection technique, such as single-cell fluorescence
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microscopy and synthetic genetic constructs, has allowed real-time monitoring of tran-
scription events in individual living cells [1, 24, 34]. In experiments, mRNA synthesis is
monitored to be random and discontinuous [17, 37]. Randomness in transcription leads
to highly variable mRNA distributions, resulting in phenotypic heterogeneity in a cell
population [20, 32].

Mathematical models have been built to characterize gene transcription and explore
its stochastic regulation [6,30,39,44,47]. In the classical two-state transcription model [30],
the promoter is thought to switch randomly between two fundamental states: active and
inactive, manifested by the observed transcriptional burst occurring in short-lived active
states interspersed by long-lived inactive intervals [27, 37]. To explore the mechanisms
that regulate stochastic mRNA production in response to environmental changes, the
three-state transcription model instead of a two-state model was proposed to describe the
transcription process [4, 39]. In this model, the OFF state is composed of two sub-states
connected in series, and both obey the exponential distribution. The assertion was then
validated in experiments [11, 37], and was generalized to different models with multiple
sub-OFF or sub-ON states [28, 42, 47], and multiple signaling pathways [21, 35, 36]. Also,
some complex models and methods were established to estimate system parameters or
calculate the probability distribution functions of transcripts [3, 5, 14, 15, 28, 31, 45].

In most models mentioned above, it was assumed that the switching rates between
different transcriptional states are constants. In other words, the state switching can be
governed by a first-order linear differential equation with a constant coefficient. In the
two-state transcription model, the promoter is assumed to switch stochastically between
an OFF state and an ON state at rates kOFF and kON , respectively. The two rates kOFF and
kON are usually defined as

kOFF =
1

TON
, kON =

1

TOFF
, (1.1)

where TON is the average duration of a burst and TOFF is the average time between two
consecutive bursts. Since the rates kOFF and kON are constants, the lifetimes of the OFF
and the ON states should have the exponential distribution. From the memoryless prop-
erty of the exponential distributions, it follows that the two-state transcription process
in fact is a continuous-time Markov chain. Other models built in this way also have the
Markov property. It is the Markov property that allows us to obtain the chemical master
equations of gene transcription.

With the help of real-time monitoring, increasing experiments indicate that the life-
times of the ON and/or the OFF states are not always exponentially distributed [12,
27, 37, 40]. In recent years, non-Markovian processes have attracted increasing inter-
est [7, 18, 23, 43]. Using single-cell time-lapse bioluminescence imaging, Suter et al. [37]
monitored transcription kinetics of some genes in mouse fibroblasts and found that the
duration of the OFF state should be described by summing two sequential exponen-
tial processes. How to bypass the molecular memory in the reaction process to estab-
lish an appropriate transcriptional model is crucial for the study of stochastic models.
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To overcome such difficulties, several new approaches have been presented. For exam-
ple, using Markovian approximation method, one could study intracellular reaction pro-
cesses with molecular memory [46]. Moreover, several transcription models with time-
dependent kinetic rates have been established which allows the calculation of the average
levels and distributions of transcripts and proteins [3, 10, 16, 19, 29, 38].

By introducing an alternating renewal process, we will propose a novel method for
computing the transcription level and the corresponding noise. In the model, we only as-
sume that the lifetimes of the transcription cycles are independent identically distributed
but nonlattice. The method we propose here allows the length of OFF (ON) time to de-
pend on the previous ON (OFF) time, and is applicable to most two-state transcription
models for which gene switches between the ON and OFF states with non-exponential
distributed durations. The rest of this paper is organized as follows. In Section 2 we
introduce the principle and process of the modeling in detail and gives the differential
equations for the mean and second moments when the promoter is in the ON and OFF
states. By employing the alternating renewal process, we give the stationary forms of
the transcription frequency, the average transcription levels and the second moments in
Sections 3 and 4. We perform numerical simulations to explore the contribution of the
different lifetimes on transcription in Section 5.

2 The model

2.1 The description of the model

In this paper, we discuss the occurrence of a discontinuous transcription process, with in-
dividual genes shifting between active and inactive periods, resulting in transcriptional
outputs oscillating periodically when the two states alternate randomly. The inactive
state is characterized by a lack of specific binding of the transcription factors to the pro-
moter and no RNA polymerase elongating the coding region. Thus, no RNA transcript
is synthesized in such state. Once the promoter is recognized and a bubble is created, the
RNA synthesis begins. During elongation, the transcription bubble moves along DNA,
and the RNA chain is extended by adding nucleotides to the growing chain. The state in
which the transcription event occurs is called the gene ON state. The active state’s exit
is defined as the instant that the transcript is released and the bubble closes. Then the
promoter enters an inactive state again.

The two-state model has been widely used to describe transcriptional fluctuations in
bacteria, yeast, and mammalian cells [9,23,30]. In this model, as depicted in Fig. 1, a gene
promoter is assumed to fluctuate randomly between an inactive state and an active state.
Initially, the promoter resides at the inactive state at time T0, and remains OFF for a time
Y1, then it is turned ON at time T1 once the RNA polymerase binds to the TATA box of
the gene and moves along the template to synthesize RNA. The promoter will remain
ON for a time Z1 until the last RNA polymerase reaches a terminator sequence, where
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Figure 1: Discontinuous transcription with the gene switches randomly between the OFF and the ON states.
RNA synthesis is catalyzed by the enzyme RNA polymerase. The gene is activated by binding RNA polymerases
to TATA-box and resides at the active state for a time Zn. RNA polymerases move along the template,
synthesizing RNA with a constant rate ν, which will be turned over with a rate δ. The gene is inactivated when
the last RNA polymerase reaches a terminator sequence, then resides at the inactive state for a time Yn. In
this state, there is no RNA transcript production occurring, but the existing transcripts are turned over with
a constant rate δ.

the transcription ends. Then it goes OFF at time T2 for a time Y2, then ON at time T3 for
a time Z2 and so forth. Let T0=0. For our model depicted in Fig. 1,

T2n−1=T2n−2+Yn, T2n =T2n−1+Zn, n≥1.

Thus, T2n−1 is the waiting time that the promoter just leaves the OFF state for n-th time,
and T2n the waiting time that the system leaves the ON state for n-th time. If the promoter
resides at the OFF state for n-th time at t, then yn = t−T2n−2 is the time from t since last
state transition occurring from ON to OFF, and ȳn =T2n−1−t is the time from t until the
next state transition occurring. yn is called the age at time t that the promoter is in OFF
for n-th time, and ȳn is called the residual life at time t. Thus, Yn =yn+ ȳn represents the
lifetime of the n-th OFF state. Similarly, if the promoter resides at ON state the n-th time
at t, then zn = t−T2n−1 is the time from t since last state transition from OFF to ON. We
make the following assumptions to complete the description of the model:

(1) The transition between OFF and ON states is instantaneous, such that the distribution
of transcripts does not change during the process.

(2) The lifetimes Yn and Zn are independent and identically distributed random variables
that follow continuous positively-valued density functions.

(3) During each OFF state, there is no production of transcripts, and mRNA molecules
are turned over with a rate parameter δ.

(4) During each ON state, the expression level of transcripts is controlled by two inde-
pendent random events, simple birth and death with rates ν and δ.

Assumption (1) is reasonable. The reaction rate for the bacterial RNA polymerase is about
40 to 50 nucleotides per second for most transcripts [22], which helps the RNA poly-
merase be bound to or released from DNA sequence in seconds. Assumption (1) also in-
dicate that each moment of transcripts is maintained during states transitions, especially
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the first and the second moments. Assumption (2) indicates that the gene transcription
process is an alternating renewal process between OFF and ON states for different peri-
ods of time. Assumptions (3) and (4) indicate that the transcripts are synthesized with
a constant rate ν only when a stable DNA/pol-II binding is formed, and are turned over
dependent on the transcript number at time t. The turned over rate δ is derived by the
half-life of transcripts.

In this paper, we assume that the two lifetimes Yn and Zn are Erlang distributed, and
the probability density functions for them are

fYn
(τ)=

λk1 τk1−1e−λτ

(k1−1)!
, τ>0, (2.1)

fZn(τ)=
γk2 τk2−1e−γτ

(k2−1)!
, τ>0, (2.2)

where k1,k2 are two positive integers and λ>0,γ>0. The Erlang distributed probability
distribution functions are

FYn(τ,k1,λ)=
∫ τ

0
fYn(u)du=1−

k1−1

∑
m=0

λmτme−λτ

m!
,

FZn(τ,k2,γ)=
∫ τ

0
fZn (u)du=1−

k2−1

∑
m=0

γmτme−γτ

m!
.

When k1 = 1,k2 = 1, the model is the classical two-state transcription model which has
been widely studied [30]. When k1=2,k2=1, this model describes a transcription process
having three functional states established by Tang [39].

2.2 The differential equations

For a given time t≥0, we let X=X(t) denote the discrete random variable that specifies
the system state. We write X(t) = O if the promoter resides at the inactive state, and
X(t)= E if the transcription is activated at time t. Let M(t) denote the mRNA number
for the gene of our interest in single cells at time t. We define two joint probabilities to
quantify the transcription system states. Let PO(m,t) be the probability that there are m
mRNA copies and the promoter resides at the inactive state, that is,

PO(m,t)=Prob{X(t)=O, M(t)=m}.

Similarly, we define
PE(m,t)=Prob{X(t)=E, M(t)=m}

to be the probability that there are m mRNA copies in the cell and the promoter resides at
the active state. To determine the mean transcript level and the noise when the promoter
resides at each transcription state, we introduce two conditional probabilities

pO(m,t)=Prob{M(t)=m |X(t)=O}=PO(m,t)/PO(t), (2.3)
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pE(m,t)=Prob{M(t)=m |X(t)=E}=PE(m,t)/PE(t), (2.4)

where the two denominators

PO(t)=Prob{X(t)=O}=
∞

∑
m=0

PO(m,t),

PE(t)=Prob{X(t)=E}=
∞

∑
m=0

PE(m,t)

define the transcriptional inefficiency and efficiency. They also denote the respective
probabilities that the promoter resides at the inactive and active states. By (2.3) and
(2.4), the two conditional probabilities pO(m,t) and pE(m,t) are the probabilities that there
are m mRNA copies when the promoter resides at the two respective states.

In above assumption (1), we have assumed that the state transition is instantaneous.
If the promoter resides at the OFF or the ON state, then the time evolution of pO(m,t) or
pE(m,t) is only determined by the birth and death process of transcripts.

By using the Kolmogorov forward equations, we calculate the time evolutions of these
probabilities (2.3) and (2.4). We first suppose that the promoter remains at the inactive
state in time interval [T2n−2,T2n−1) (n≥1) and will leave this state at time T2n−1. For any
time t∈[T2n−2,T2n−1),∆t is an infinitesimal time increment such that t+∆t∈[T2n−2,T2n−1).
Suppose that there are m mRNA copies at time t+∆t. Then the basic model assump-
tions (1)-(4) imply that one of the following events must occur at time t:

(i) There is no elimination of transcripts taking place during the time interval (t,t+∆t)
with a probability pO(m,t)(1−mδ∆t).

(ii) There is one transcript being eliminated during the time interval (t,t+∆t) with
a probability pO(m,t)mδ∆t.

Adding the probabilities in (i)-(ii) together gives pO(m,t+∆t). Dividing the resulting
equality by ∆t and then letting ∆t→0, we obtain

p′O(m,t)=−mδpO(m,t)+(m+1)δpO(m+1,t). (2.5)

When the promoter resides at the active state in time interval [T2n−1,T2n) (n≥1), one of
the following events may occur at time t:

(i) There is no production or elimination of transcripts taking place during (t,t+∆t)
with a probability pE(m,t)(1−ν∆t)(1−mδ∆t).

(ii) There is one transcript being eliminated during the time interval (t,t+∆t) with
a probability pE(m,t)mδ∆t.

(iii) There is one transcript being produced during the time interval (t,t+∆t) with
a probability pE(m,t)ν∆t.



M. Zheng, Z. Qiu, F. Jiao and Q. Sun / CSIAM Trans. Appl. Math., x (2024), pp. 1-25 7

By using a similar discussion as above, we obtain the time evolution of pE(m,t) as

p′E(m,t)=νpE(m−1,t)+(m+1)δpE(m+1,t)−νpE(m,t)−mδpE(m,t). (2.6)

The Eqs. (2.5) and (2.6) give the basic differential equations. When the gene promoter
transits randomly between the OFF and the ON states, then pO(m,t) and pE(m,t) switch
randomly according to state transition.

Without loss of generality, we assume that the transcription starts from the OFF state
with none transcripts existence in the cell at time t=0. It gives the initial condition

PO(0,0)=1, PO(m,0)=0, m>0,

PE(m,0)=0, m≥0.
(2.7)

Furthermore, we have

pO(t)= pOn(τ)≡1, pE(t)= pEn(τ)≡0, T2n−2≤ t<T2n−1, 0≤τ<Yn,

pO(t)= pOn(τ)≡0, pE(t)= pEn(τ)≡1, T2n−1≤ t<T2n, 0≤τ<Zn.

In the model, Tn is the exact time that the state transition occurs. To simplify calcula-
tion, we introduce a new timer τ such that the transcription system reclocks at time Tn,
and stamp each variable V(t) by a subscript such as VOn(τ) or VEn(τ) to denote this vari-
able resides at the inactive or active states the n-th time at time t. The time evolution
of V(t) is governed by the following ordinary differential equations:

VOn(τ)=VOn(t), T2n−2≤ t<T2n−1, 0≤τ<Yn,
dτ

dt
=1,

VEn(τ)=VEn(t), T2n−1≤ t<T2n, 0≤τ<Zn,
dτ

dt
=1.

3 The stationary frequency of elongation and the average

transcript levels

3.1 The transcription frequency

To give the probabilities that the promoter resides at the inactive and active states, we
need the following definition and lemmas.

Definition 3.1. A nonnegative random variable X is said to be lattice if there exists d≥ 0 such
that

∞

∑
n=0

P(X=nd)=1.

For example, if X is a random variable with Bernoulli distribution, then its distri-
bution function F is lattice. In our model, the lifetimes {Yn} and {Zn} are continuous
positive-valued distributed, thus they are nonlattice. Let FYn be the distribution of Yn, FZn

the distribution of Zn, and F the distribution of Yn+Zn, then we have
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Lemma 3.1. If E[Yn+Zn]<∞ and F is nonlattice, then

P∗
O = lim

t→∞
PO(t)=

E[Yn]

E[Yn]+E[Zn]
,

P∗
E = lim

t→∞
PE(t)=

E[Zn]

E[Yn]+E[Zn]
.

(3.1)

The proof of this lemma can be found in [33]. We call the limit P∗
E = limt→∞ PE(t) the

stationary frequency of elongation. When the transcription system reaches a steady state,
the transcription frequency P∗

E is approximately the ratio of the average sojourn time in
ON state to the average lifetime of one transcription cycle. The formula P∗

E also indicates
the percentage of expressing cells among a population of isogenic cells.

In the transcription cycle, the residence time vectors (Yn,Zn) are independent and
identically distributed. Lemma 3.1 indicates, as we expect intuitively, that the percentage
that the promoter resides at the active state equals the average ON time over the total
average transcription cycle time.

Lemma 3.2. If the state durations {Yn} and {Zn} are Erlang-distributed with density functions
(2.1) and (2.2), then

P∗
O=

k1γ

k2λ+k1γ
, P∗

E =
k2λ

k2λ+k1γ
. (3.2)

In the n-th transcription cycle, we re-clock the time when the state transition from
(n−1)-th ON state to n-th OFF state occurs. Let yn be the time such that the promoter
remains OFF during [0,yn]. Then yn would represent the age of the promoter in n-th OFF
state. By using the renewal theory, we have that

Fyn(τ)=Prob{yn ≤τ}=E[min(Yn,τ)]/E[Yn]=
∫ τ

0
FYn

(y)dy/E[Yn ],

where FYn(y)=1−FYn (y).

Lemma 3.3. If {Yn} is Erlang-distributed, then the distribution function of yn is

Fyn(τ)=Prob{yn ≤τ}=
1

k1
[F(τ,1,λ)+F(τ,2,λ)+···+F(τ,k1,λ)], (3.3)

where F(τ,k,λ) is Erlang distribution function with shape parameter k and scale parameter 1/λ.

Lemma 3.3 gives the distribution of the age yn when the duration Yn is Erlang-distri-
buted. Similarly, let zn be the age that the promoter remains ON during [0,zn ] in n-th
transcription cycle, then the distribution of the age zn can be obtained by replacing λ,k1

by γ,k2 in (3.3), that is,

Fzn(τ)=Prob{zn ≤τ}=
1

k2
[F(τ,1,γ)+F(τ,2,γ)+···+F(τ,k2,γ)]. (3.4)

However, experimental observations show that the cell cycle time distribution (CCTD) is
typically non-monotonic and differs substantially from an exponential distribution.
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3.2 The average transcript level in each state

To begin, recall that the expected value of the random variable M(t) is defined by

m(t)=E[M(t)]=
∞

∑
m=0

mP(m,t), (3.5)

where the probability mass function

P(m,t)=Prob{M(t)=m}=PO(m,t)+PE(m,t)

is the probability that there are m transcripts at time t in single cells. By using (2.3), (2.4)
and the above probability mass function, we rewrite m(t) as

m(t)=
∞

∑
m=0

m[PO(m,t)+PE(m,t)]=mO(t)·PO(t)+mE(t)·PE(t), (3.6)

where

mO(t)=
∞

∑
m=0

mpO(m,t), mE(t)=
∞

∑
m=0

mpE(m,t) (3.7)

are the average transcript numbers in single cells at time t when the promoter resides at
the two states.

Thus, the average transcript number m(t) only depends on the mean levels mO(t),
mE(t) and the two probabilities PO(t), PE(t) that the promoter remains at the OFF and the
ON states. As stated in assumptions (3) and (4), mRNA molecules are produced with
a constant rate ν in ON state, and there is no production taking place in OFF state. In-
tuitively, mO(t) decreases if the duration of inactive state increases and mE(t) increases
if the duration of active state increases. In one case, PO(t) will increase when inactive
state duration increases and active state duration remains stable. In another case, PE(t)
increases when active state duration increases and inactive state duration remains sta-
ble. Thus, the mean transcript level may increase with the probability that the promoter
remains on active state and the duration of this state.

For clarity, we give four notations, that is,

〈mOn〉=
∫ ∞

0
mOn(τ)dFYn(τ), 〈mEn〉=

∫ ∞

0
mEn(τ)dFZn(τ), (3.8)

mOn =
∫ ∞

0
mOn(τ)dFyn(τ), mEn=

∫ ∞

0
mEn(τ)dFzn(τ), (3.9)

where 〈mOn〉 and 〈mEn〉 are the average transcript numbers at the moments that the pro-
moter leaves the OFF and ON states in the n-th transcription cycle, mOn and mEn are the
average numbers during the two states in the n-th transcription cycle. Then we have

lim
t→∞

mO(t)= lim
n→∞

mOn, lim
t→∞

mE(t)= lim
n→∞

mEn. (3.10)

Above limitation implies that we only need to calculate limn→∞ mOn and limn→∞ mEn,
then derive the stationary transcript level from (3.6) by taking limits.
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Theorem 3.1. Suppose that the state lifetimes {Yn} and {Zn} are Erlang-distributed, then the
average transcript numbers 〈mOn〉 and 〈mEn〉 when the promoter leaves the n-th OFF and the
n-th ON states are given as

〈mOn〉=MOn ·
λk1

(δ+λ)k1
, 〈mEn〉=

ν

δ
+
(

MEn−
ν

δ

)

·
γk2

(δ+γ)k2
,

where MOn and MEn are the (average) initial transcript numbers at the beginning of the OFF
and the ON states in n-th transcription cycle. And 〈mOn〉 and 〈mEn〉 satisfy following recursion
formulas:

〈mOn+1〉= 〈mOn〉·
λk1 γk2

(δ+λ)k1(δ+γ)k2
+

ν

δ
·
λk1

[

(δ+γ)k2−γk2
]

(δ+λ)k1(δ+γ)k2
,

〈mEn+1〉= 〈mEn〉·
λk1 γk2

(δ+λ)k1(δ+γ)k2
+

ν

δ
·
(δ+γ)k2 −γk2

(δ+γ)k2
.

When n→∞, the limits of these two average numbers are given as

〈mO〉=
ν

δ
·

λk1
[

(δ+γ)k2−γk2
]

(δ+λ)k1(δ+γ)k2 −λk1 γk2
, (3.11)

〈mE〉=
ν

δ
·
(δ+λ)k1

[

(δ+γ)k2 −γk2
]

(δ+λ)k1(δ+γ)k2−λk1 γk2
. (3.12)

In Theorem 3.1, 〈mO〉 gives the average transcript number at the moment that the
promoter is activated, and 〈mE〉 gives the number at the moment that the promoter is
inactivated.

Proof. We will give the detailed process to obtain the average transcript levels at steady
state when the promoter resides at the OFF and the ON states respectively. Firstly, we
consider the case that the promoter resides at the OFF state during the n-th transcription
cycle at time t and remains OFF for a time Yn. Let τ be the time from t since the last state
transition occurs, that is τ= t−T2n−2. Then τ=0 at the moment that the promoter is in-
activated at t = T2n−2 and τ =Yn when the transcription is activated at time t = T2n−1.
The average transcript number mOn(τ) during this state is defined to be the sum of
m·pOn(m,τ), 0≤τ<Yn. Multiplying (2.5) by m and summing up these products lead to

dmOn(τ)

dτ
=−δmOn(τ), 0≤τ<Ys. (3.13)

We will solve this equation by using the Laplace transform. Without loss of generality,
we assume that there are MOn transcripts at the beginning of the OFF state. By applying
the Laplace transform to (3.13) and noticing that the initial condition is mOn(0) = MOn,
we transform the differential equation (3.13) into an algebraic equation

sL
(

mOn(τ)
)

−MOn =−δL
(

mOn(τ)
)

,
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which can be written as

L
(

mOn(τ)
)

=
MOn

s+δ
. (3.14)

By applying the inverse Laplace transform to (3.14), we obtain the average transcript
level at time τ when the promoter resides at the OFF state with the initial condition MOn,

mOn(τ)=MOn ·e
−δτ , 0≤τ<Yn. (3.15)

Then the transcript number at time Yn when the promoter leaves the OFF state is given by

mOn(Yn)=MOn ·e
−δYn . (3.16)

Since the sojourn time Yn in the OFF state is Erlang-distributed with rates k1 and λ in
the time interval [0,∞) and the density function fYn(τ) has been given in (2.1), then we
integrate (3.16) with respect to Yn over the time interval [0,∞) and derive the average
transcript number 〈mOn〉 at the moment that the promoter leaves the OFF state, that is,

〈mOn〉=
∫ ∞

0
mOn(τ) fYn(τ)dτ=

∫ ∞

0
mOn(τ)·

λk1 τk1−1e−λτ

(k1−1)!
dτ=MOn ·

λk1

(δ+λ)k1
. (3.17)

Eq. (3.17) implies that the average transcript number 〈mOn〉 is linearly dependent on the
initial value MOn. Thus, (3.17) also holds when we compute the expected value of MOn.

Next, we consider another case that the promoter resides at the n-th ON state. In
fact, once the transcription site of the promoter is occupied by RNA polymerase, the
gene transcription is activated and the polymerase moves along the encoding region and
elongates RNA. After turned on, the promoter remains ON for a time Zn. Let τ be the
time from t since the last state transition occurs, that is τ = t−T2n−1. Then τ = 0 at the
moment that the promoter is activated at t = T2n−1, and τ = Zn when the promoter is
inactivated at t = T2n. In this new state, the average transcript level mEn(τ) is the sum
of m·pEn(m,τ). Multiplying (2.6) by m and summing them up give the time evolution of
mEn(τ), that is,

dmEn(τ)

dτ
=ν−δmEn(τ), 0≤τ<Zn. (3.18)

Similarly, we apply the Laplace transform to (3.18) and then derive

sL
(

mEn(τ)
)

−MEn=L(ν)−δL
(

mEn(τ)
)

,

which can be rewritten and decomposed as

L
(

mEn(τ)
)

=
ν+sMEn

s(s+δ)
=

ν/δ

s
+

MEn−ν/δ

s+δ
. (3.19)

By applying the inverse Laplace transform to (3.19), we get the form of mEn(τ) as

mEn(τ)=
ν

δ
+
(

MEn−
ν

δ

)

e−δτ, 0≤τ<Zn. (3.20)
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Then the average transcript number at time Zn is given by

mEn(Zn)=
ν

δ
+
(

MEn−
ν

δ

)

e−δZn . (3.21)

Since the sojourn time Zn is also Erlang-distributed with rates k2 and γ in time interval
[0,∞) and its density function has been given in (2.2), then the average transcript number
at the end of the n-th ON state is

〈mEn〉=
∫ ∞

0

[ν

δ
+
(

MEn−
ν

δ

)

e−δτ
]

fZn(τ)dτ=
ν

δ
+
(

MEn−
ν

δ

) γk2

(δ+γ)k2
. (3.22)

Eq. (3.22) implies that 〈mEn〉 is linearly dependent on MEn, and it holds when we take the
expected value to MEn.

As stated in assumption (1), the state transition from OFF to ON is instantaneous,
which implies that there is no production or elimination of transcripts taking place during
such an infinitesimal time. Thus, the transcript distribution at the beginning of the n-th
ON state is maintained at the same level as that at the end of the n-th OFF state. Without
loss of generality, we could assume that the initial condition for mEn(τ) is

mEn(0)=MEn= 〈mOn〉. (3.23)

Also the distribution of transcripts does not change during an infinitesimal time incre-
ment when the promoter transfers from the ON state in the n-th transcription cycle to the
OFF state in the (n+1)-th transcription cycle, thus we take the initial value of mOn+1(τ) as

mOn+1(0)=MOn+1= 〈mEn〉, (3.24)

where mOn+1(τ) is the temporal mRNA expression level when the promoter resides at
the (n+1)-th OFF state and MOn+1 is its initial number. From Eqs. (3.17), (3.22)-(3.24), we
obtain recurrence formulas for 〈mOn〉 and 〈mEn〉, that is,

〈mOn+1〉= 〈mOn〉·
λk1 γk2

(δ+λ)k1(δ+γ)k2
+

νλk1
[

(δ+γ)k2−γk2
]

δ(δ+λ)k1(δ+γ)k2
,

〈mEn+1〉= 〈mEn〉·
λk1 γk2

(δ+λ)k1(δ+γ)k2
+

ν
[

(δ+γ)k2 −γk2
]

δ(δ+γ)k2
.

Taking limits to above two equations with respect to n gives

〈mO〉=
νλk1

[

(δ+γ)k2−γk2
]

δ
[

(δ+λ)k1(δ+γ)k2−λk1 γk2
] ,

〈mE〉=
ν(δ+λ)k1

[

(δ+γ)k2−γk2
]

δ
[

(δ+λ)k1(δ+γ)k2−λk1 γk2
] .

The two transcript levels 〈mO〉 and 〈mE〉 in above equations give the average numbers
at steady state when the promoter just leaves inactive and active states respectively.
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Theorem 3.2. Under the conditions of Theorem 3.1, the average transcript numbers mO and mE

when the promoter resides at the OFF and the ON states are given as

mO=
ν

δ
·
λ
[

(δ+λ)k1 −λk1
][

(δ+γ)k2 −γk2
]

k1δ
[

(δ+λ)k1(δ+γ)k2−λk1 γk2
] , (3.25)

mE=
ν

δ
·

[

1−
γ
[

(δ+λ)k1 −λk1
][

(δ+γ)k2−γk2
]

k2δ[(δ+λ)k1(δ+γ)k2−λk1 γk2 ]

]

. (3.26)

Then the stationary average transcript number in single cells is

m∗=mO ·P
∗
O+mE ·P

∗
E =

ν

δ
·

k2λ

k2λ+k1γ
. (3.27)

Proof. We have given the probability distribution function of the time yn as shown in
Lemma 3.3, then the its density function is

fyn(τ)=
d

dτ
Fyn(τ)=

1

k1

[

λe−λτ+
λ2τe−λτ

1!
+···+

λk1 τk1−1e−λτ

(k1−1)!

]

. (3.28)

When the promoter resides at the n-th OFF state, we have derived the temporal expres-
sion of transcripts as shown in (3.15). Then the mean transcription level over the whole
OFF state is

mOn=
∫ ∞

0
mOn(τ) fyn(τ)dτ=MOn ·

1

k1

k1

∑
i=1

(

λ

δ+λ

)i

. (3.29)

Similarly, the probability density function of the time zn in the n-th ON state is

fzn(τ)=
1

k2

[

γe−γτ+
γ2τe−γτ

1!
+···+

γk2 τk2−1e−γτ

(k2−1)!

]

. (3.30)

And, we have derived the temporal transcript level as shown in (3.20) when the promoter
is in the ON state. Then the mean transcript level over this ON state is

mEn=
∫ ∞

0
mEn(τ) fzn(τ)dτ=

ν

δ
+
(

MEn−
ν

δ

)

·
1

k2

k2

∑
i=1

(

γ

δ+γ

)i

. (3.31)

Taking limits to mOn and mEn with respect to n, we have

mO =MO ·
1

k1

k1

∑
i=1

(

λ

δ+λ

)i

, (3.32)

mE=
ν

δ
+
(

ME−
ν

δ

)

·
1

k2

k2

∑
i=1

(

γ

δ+γ

)i

. (3.33)

Since MO = 〈mE〉 and ME = 〈mO〉 have been given in Theorem 3.1, then we substitute
them into above equations and derive (3.25) and (3.26).

Taking limits to m(t) with respect to t and substitute (3.2), (3.25) and (3.26) into (3.6),
we get the mean transcript level at steady state in single cells as shown in (3.27).
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4 The stationary noise of transcripts

To characterize the fluctuations of transcripts in cell populations, we introduce the noise
η2(t), the variance σ2(t) normalized by the square of the average m(t) and the noise
strength Φ(t), the ratio between the variance and the average, that is,

η2(t)=
σ2(t)

m2(t)
, Φ(t)=

σ2(t)

m(t)
, (4.1)

where σ2(t) = µ(t)−m2(t). As the average transcript levels have been given in Theo-
rems 3.1 and 3.2, it suffices to evaluate the second moment functions in this section.

By definition, the second moment of the transcript number M(t) is

µ(t)=E[M2(t)]=
∞

∑
m=0

m2P(m,t). (4.2)

In order to derive the form of the second moment, it is helpful to consider two values

µO(t)=
∞

∑
m=0

m2pO(m,t), µE(t)=
∞

∑
m=0

m2 pE(m,t). (4.3)

The two values give the second moments of transcripts in the OFF and ON states, respec-
tively. Then µ(t) can be split into

µ(t)=µO(t)·PO(t)+µE(t)·PE(t). (4.4)

Similarly, we define four notations, that is,

〈µOn〉=
∫ ∞

0
µOn(τ)dFYn(τ), 〈µEn〉=

∫ ∞

0
µEn(τ)dFZn (τ), (4.5)

µOn =
∫ ∞

0
µOn(τ)dFyn(τ), µEn=

∫ ∞

0
µEn(τ)dFzn(τ), (4.6)

where 〈µOn〉 and 〈µEn〉 give the second moments of transcripts at the moment that the
promoter leaves the n-th OFF or the n-th ON states, µOn and µEn give the second moments
of transcripts when the promoter resides at the n-th OFF or the n-th ON states. And we
have

lim
t→∞

µO(t)= lim
n→∞

µOn, lim
t→∞

µE(t)= lim
n→∞

µEn. (4.7)

Then the stationary second moment is given by

µ∗= lim
t→∞

µ(t)= lim
n→∞

µOn ·P
∗
O+ lim

n→∞
µEn ·P

∗
E . (4.8)
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Theorem 4.1. Under the conditions of Theorem 3.1, the second moments for transcripts existing
at the end of (n+1)-th OFF and (n+1)-th ON states satisfy

〈µOn+1〉= 〈µOn〉
λk1 γk2

(2δ+λ)k1(2δ+γ)k2

+
λk1

(2δ+λ)k1

[

ν(ν+δ)

δ2
−

ν(2ν+δ)γk2

δ2(δ+γ)k2
+

ν2γk2

δ2(2δ+γ)k2

]

+〈mEn〉
λk1

[

(2δ+λ)k1 −(δ+λ)k1
]

(δ+λ)k1(2δ+λ)k1

+〈mOn〉
(2ν+δ)λk1 γk2

[

(2δ+γ)k2 −(δ+γ)k2
]

δ(2δ+λ)k1(δ+γ)k2(2δ+γ)k2
, (4.9)

〈µEn+1〉= 〈µEn〉
λk1 γk2

(2δ+λ)k1(2δ+γ)k2

+

[

ν(ν+δ)

δ2
−

ν(2ν+δ)γk2

δ2(δ+γ)k2
+

ν2γk2

δ2(2δ+γ)k2

]

+〈mEn〉
λk1 γk2

[

(2δ+λ)k1 −(δ+λ)k1
]

(δ+λ)k1(2δ+λ)k1(2δ+γ)k2

+〈mOn+1〉
(2ν+δ)γk2

[

(2δ+γ)k2−(δ+γ)k2
]

δ(δ+γ)k2(2δ+γ)k2
. (4.10)

When n→∞, the stationary second moments for transcripts at the end of the OFF and the
ON states are

〈µO〉= 〈mO〉+〈mO〉·
ν

δ

[

(δ+λ)k1(2δ+γ)k2 −λk1 γk2

(2δ+λ)k1(2δ+γ)k2−λk1 γk2

−
γk2

[

(δ+λ)k1 −λk1
][

(2δ+γ)k2−(δ+γ)k2
]

[

(δ+γ)k2−γk2
][

(2δ+λ)k1(2δ+γ)k2 −λk1 γk2
]

]

, (4.11)

〈µE〉=〈mE〉+〈mE〉·
ν(2δ+λ)k1

δ(δ+λ)k1

[

(δ+λ)k1(2δ+γ)k2−λk1 γk2

(2δ+λ)k1(2δ+γ)k2−λk1 γk2

−
γk2

[

(δ+λ)k1 −λk1
][

(2δ+γ)k2−(δ+γ)k2
]

[

(δ+γ)k2−γk2
][

(2δ+λ)k1(2δ+γ)k2−λk1 γk2
]

]

. (4.12)

Proof. Let the promoter reside at the inactive state the n-th time. For any 0≤ τ<Yn, the
second moment of transcripts µOn(τ) is defined to be the sum of m2 ·pOn(m,τ). Thus,
multiplying (2.5) by m2 and taking the sum lead to

µ′
On(τ)=−2δµOn(τ)+δmOn(τ), 0≤τ<Yn. (4.13)

At the beginning of this state, we assume that the initial condition of second moment
is µOn(0) = ΛOn. By applying the Laplace transform to (4.13), we transform (4.13) into



16 M. Zheng, Z. Qiu, F. Jiao and Q. Sun / CSIAM Trans. Appl. Math., x (2024), pp. 1-25

an algebraic equation

sL
(

µOn(τ)
)

−ΛOn =−2δL
(

µOn(τ)
)

+δL
(

mOn(τ)
)

, (4.14)

where L(mOn(τ)) has been given in (3.14). Substituting (3.14) into (4.14), we obtain

L
(

µOn(τ)
)

=
MOn

s+δ
+

ΛOn−MOn

s+2δ
.

Then applying the inverse Laplace transform to above decomposition gives

µOn(τ)=MOne−δτ+(ΛOn−MOn)e
−2δτ , 0≤τ<Yn. (4.15)

Thus, the second moment of transcripts at the time τ=Yn is

µOn(Yn)=MOne−δYn+(ΛOn−MOn)e
−2δYn . (4.16)

Since the duration Yn has the Erlang distribution with parameters λ and k1, then the
second moment of transcripts at the end of the n-th OFF state is given by integrating
(4.16) with respect to Yn on the interval [0,∞), that is,

〈µOn〉=
∫ ∞

0
µOn(τ)dFYn(τ)=MOn

λk1

(δ+λ)k1
+(ΛOn−MOn)

λk1

(2δ+λ)k1
. (4.17)

Similarly, the second moment of transcripts in the n-th ON state is the sum of
m2 ·pEn(m,τ). And its time evolution is

µ′
En(τ)=2νmEn(τ)+ν−2δµEn(τ)+δmEn(τ), 0≤τ<Zn. (4.18)

Assuming µEn(0)=ΛEn and applying the Laplace transform to (4.18), we transfer (4.18)
into

sL
(

µEn(τ)
)

−ΛEn=2νL
(

mEn(τ)
)

+L(ν)−2δL
(

µEn(τ)
)

+δL
(

mEn(τ)
)

.

Solving this equation, we have

L
(

µEn(τ)
)

=
ν(ν+δ)

δ2s
−
(2ν+δ)(ν−δMEn)

δ2(s+δ)

+
δ2ΛEn+ν2−(2ν+δ)δMEn

δ2(s+2δ)
. (4.19)

Applying the inverse Laplace transform to (4.19) gives

µEn(τ)=
ν(ν+δ)

δ2
−
(2ν+δ)(ν−δMEn)

δ2
e−δτ

+
δ2ΛEn+ν2−(2ν+δ)δMEn

δ2
e−2δτ . (4.20)



M. Zheng, Z. Qiu, F. Jiao and Q. Sun / CSIAM Trans. Appl. Math., x (2024), pp. 1-25 17

When τ=Zn, the second moment is

µEn(Zn)=
ν(ν+δ)

δ2
−
(2ν+δ)(ν−δMEn)

δ2
e−δZn

+
δ2ΛEn+ν2−(2ν+δ)δMEn

δ2
e−2δZn . (4.21)

Integrating (4.21) gives the second moment of transcripts at the end of the n-th ON state,
that is,

〈µEn〉=
∫ ∞

0
µEn(τ)dFZn (τ)

=
ν(ν+δ)

δ2
−
(2ν+δ)(ν−δMEn)

δ2
·

γk2

(δ+γ)k2

+
δ2ΛEn+ν2−(2ν+δ)δMEn

δ2
·

γk2

(2δ+γ)k2
. (4.22)

Since transitions between the OFF and the ON states are completed instantaneously,
then the second moments of transcripts does not change during state transitions occur.
Thus, we have following identities:

µEn(0)=ΛEn= 〈µOn〉, µOn+1(0)=ΛOn+1= 〈µEn〉. (4.23)

From (4.17), (4.22) and (4.23), we find that 〈µOn〉 and 〈µEn〉 satisfy

〈µOn+1〉= 〈µOn〉
λk1 γk2

(2δ+λ)k1(2δ+γ)k2

+
λk1

(2δ+λ)k1

[

ν(ν+δ)

δ2
−

ν(2ν+δ)γk2

δ2(δ+γ)k2
+

ν2γk2

δ2(2δ+γ)k2

]

+MOn+1

λk1
[

(2δ+λ)k1 −(δ+λ)k1
]

(δ+λ)k1(2δ+λ)k1

+MEn

(2ν+δ)λk1 γk2
[

(2δ+γ)k2 −(δ+γ)k2
]

δ(2δ+λ)k1(δ+γ)k2(2δ+γ)k2
,

〈µEn+1〉= 〈µEn〉
λk1 γk2

(2δ+λ)k1(2δ+γ)k2

+

[

ν(ν+δ)

δ2
−

ν(2ν+δ)γk2

δ2(δ+γ)k2
+

ν2γk2

δ2(2δ+γ)k2

]

+MOn+1
λk1 γk2 [(2δ+λ)k1−(δ+λ)k1 ]

(δ+λ)k1(2δ+λ)k1(2δ+γ)k2

+MEn+1
(2ν+δ)γk2 [(2δ+γ)k2−(δ+γ)k2 ]

δ(δ+γ)k2(2δ+γ)k2
.
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From the two recurrent formulas, we could find that they are linearly dependent on
MOn and MEn, then they also hold when changing the initial numbers MOn, MEn into
average numbers. From (3.23) and (3.24), we get (4.9) and (4.10) by changing MOn+1 to
〈mEn〉 and MEn to 〈mOn〉.

Taking limits to above two equations, we have

〈µO〉=
νλk1

[

(ν+δ)(δ+γ)k2(2δ+γ)k2 −(2ν+δ)γk2(2δ+γ)k2 +νγk2(δ+γ)k2
]

δ2(δ+γ)k2
[

(2δ+λ)k1(2δ+γ)k2−λk1 γk2
]

+MO ·
λk1(2δ+γ)k2

[

(2δ+λ)k1 −(δ+λ)k1
]

(δ+λ)k1
[

(2δ+λ)k1(2δ+γ)k2 −λk1 γk2
]

+ME ·
(2ν+δ)λk1 γk2

[

(2δ+γ)k2−(δ+γ)k2
]

δ(δ+γ)k2
[

(2δ+λ)k1(2δ+γ)k2 −λk1 γk2
] ,

〈µE〉=
ν(2δ+λ)k1

[

(ν+δ)(δ+γ)k2(2δ+γ)k2 −(2ν+δ)γk2(2δ+γ)k2 +νγk2(δ+γ)k2
]

δ2(δ+γ)k2
[

(2δ+λ)k1(2δ+γ)k2−λk1 γk2
]

+MO ·
λk1 γk2

[

(2δ+λ)k1 −(δ+λ)k1
]

(δ+λ)k1
[

(2δ+λ)k1(2δ+γ)k2 −λk1 γk2
]

+ME ·
(2ν+δ)(2δ+λ)k1 γk2

[

(2δ+γ)k2−(δ+γ)k2
]

δ(δ+γ)k2
[

(2δ+λ)k1(2δ+γ)k2−λk1 γk2
] .

Changing MO to 〈mE〉 and ME to 〈mO〉, we obtain the two stationary second moments
(4.11) and (4.12).

Theorem 4.2. The second moments for transcripts existing in the OFF and ON states are given as

µO =mO+[〈µE〉−〈mE〉]
1

k1

k1

∑
i=1

(

λ

2δ+λ

)i

, (4.24)

µE=mE+
ν

δ

[

2mE−
ν

δ

]

+

[

〈µO〉−〈mO〉+
ν2

δ2
−

2ν

δ
〈mO〉

]

1

k2

k2

∑
i=1

(

γ

2δ+γ

)i

. (4.25)

Then the second moment of transcripts at steady state is

µ∗=m∗+m∗ ·
ν

δ
·

[

1−
γ
[

(δ+λ)k1 −λk1
][

(δ+γ)k2 −γk2
]

k2δ
[

(δ+λ)k1(δ+γ)k2 −λk1 γk2
]

]

. (4.26)

Proof. When the promoter resides at the OFF state, the analytical expression for the sec-
ond moment of transcripts has been given in (4.15), and the distribution of the age yn

that the promoter remains OFF has been given in (3.28). Then the second moment for
transcripts existing in the n-th OFF state is

µOn=
∫ ∞

0
µOn(τ) fyn(τ)dτ=

MOn

k1

k1

∑
i=1

(

λ

δ+λ

)i

+
ΛOn−MOn

k1

k1

∑
i=1

(

λ

2δ+λ

)i

.
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When the promoter resides at the n-th ON state, the second moment of transcripts is

µEn=
∫ ∞

0
µEn(τ) fzn(τ)dτ

=
ν(ν+δ)

δ2
−
(2ν+δ)(ν−δMEn)

k2δ2

k2

∑
i=1

(

γ

δ+γ

)i

+
δ2ΛEn+ν2−(2ν+δ)δMEn

k2δ2

k2

∑
i=1

(

γ

2δ+γ

)i

.

Taking limits to µOn and µEn with respect to n, we have

µO =
MO

k1

k1

∑
i=1

(

λ

δ+λ

)i

+
ΛO−MO

k1

k1

∑
i=1

(

λ

2δ+λ

)i

, (4.27)

µE =
ν(ν+δ)

δ2
−
(2ν+δ)(ν−δME)

k2δ2

k2

∑
i=1

(

γ

δ+γ

)i

+
δ2ΛE+ν2−(2ν+δ)δME

k2δ2

k2

∑
i=1

(

γ

2δ+γ

)i

. (4.28)

By changing MO to 〈mE〉, ME to 〈mO〉, ΛO to 〈µE〉 and ΛE to 〈µO〉, we get µO and µE.
Since the stationary second moment µ∗ can be split into

µ∗=µO ·P∗
O+µE ·P

∗
E , (4.29)

then we only need to substitute (3.2), (4.24) and (4.25) into above equation and obtain the
second moment µ∗. We have completed the proof.

By definition of the noise strength, we can give its stationary form, that is

Φ∗=1+
ν

δ
·

[

k1γ

k1γ+k2λ
−

γ
[

(δ+λ)k1−λk1
][

(δ+γ)k2−γk2
]

k2δ
[

(δ+λ)k1(δ+γ)k2−λk1 γk2
]

]

. (4.30)

5 Discussion

The stationary transcription level and the noise strength we derived are in good agree-
ment with existing theoretical results [30,39]. For example, if the lifetimes of the OFF and
the ON states are exponentially distributed with parameters λ and γ (k1 =1 and k2 =1),
then the transcription model is called telegraph model, which was firstly established by
Peccoud and Ycart [30]. Based on our previous results, the stationary transcription level
and the noise strength are given as

m∗=
νλ

δ(λ+γ)
, Φ∗=1+

νγ

(δ+λ+γ)(λ+γ)
.
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When k1=2 and k2=1, our model describes a transcription system that the promoter
transits circularly among three functional states by dividing the OFF state into a ground
state and an engaged state [4, 39]. By letting both the lifetimes of ground state and en-
gaged state follow an exponential distribution with a same parameter λ, our results are
consistent with the conclusions derived in [39]. At this moment, the transcription level
and the noise strength are given as

m∗=
νλ

δ(λ+2γ)
, Φ∗=1+

νγ(2δ+3λ)

[δ2+(2λ+γ)δ+(λ2+2λγ)](λ+2γ)
. (5.1)

A special case is considered by assuming the average lifetimes of the OFF and the
ON states are fixed, that is, E[Yn] = T1 and E[Zn] = T2 are two constants. Since random
variables Yn and Zn have Erlang distributions, then the average lifetimes of the OFF and
the ON states are

E[Yn]=
k1

λ
, E[Zn]=

k2

γ
. (5.2)

When k1 and λ increase synchronously, then the stationary transcription level is main-
tained, but the temporal profile is different. As shown in Fig. 2, only a few mRNA
molecules are synthesized during the initiation of transcription. The temporal profile
displays a damped oscillation behavior. On the other hand, when k2 and γ increase
synchronously, we find that the average transcription level will reach equilibrium more
quickly than in a two-state transcription system.

Figure 2: The temporal profile of the average transcription level. The average lifetimes of the OFF and the
ON states are maintained. The red curve depicts the temporal profile of transcripts produced in the classical
two-state transcription system. When k1 increases and k2 =1 is fixed, the profile displays a damage oscillatory
behavior. At the beginning of transcription, only a few transcripts are produced. When k1 = 1 is fixed and k2
increases, the profiles are simple and could enter homeostasis in a short time.
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Unlike the mean transcription level, the noise strength decreases as k1 and k2 increase.
As shown in Fig. 3, the noise strength has a maximum value when k1 = 1 and k2 = 1. In
other words, the telegram process generates maximal noise strength. When k1,k2 increase
to infinity and E[Yn],E[Zn] are fixed, the transcription level and the noise strength at
steady state are given as

m∗=
νT2

δ(T1+T2)
, Φ∗=1+

ν

δ

[

T1

T1+T2
−
(eδT1−1)(eδT2−1)

δT2[eδ(T1+T2)−1]

]

. (5.3)

Note that the molecular memory increases while noise strength decreases as k1 and k2

increase, we find that the existence of molecular memory may suppress the fluctuation
of mRNA molecule numbers within an isogenic cell population. Moreover, as shown
in Fig. 3, transcription noise decreases to approximate the minimum value in (5.3) by
slightly increasing k1 or k2. This suggests that the model with small number of steps be-
tween ON and OFF states may be enough to capture the observed stochastic transcription
data, as shown previously the 3 steps for mouse fibroblast genes [37] and optimal 4 steps
for both E.coli tetA promoter [48] and yeast stress response genes [28].

In fact, when T1+T2 is a constant, its distribution function is lattice, we could not use
the alternating renewal process to analyze the transcription process. The transcription
level and the noise strength could be derived by letting k1,k2 → ∞. When the shape
parameters k1,k2→∞, we find that the lifetimes Yn and Zn tend to degenerate univariates.
It means that the promoter spends confirmed sojourn times in the OFF and the ON states
in each transcription cycle. The age yn has a Uniform [0,T1] distribution, and zn has
a Uniform [0,T2] distribution. When T1→0 or T2→∞, the transcription process is usually

Figure 3: The noise strength decreases when k1 and k2 increase. The average lifetimes of the OFF and the ON
states are maintained. When k1 and/or k2 increase, the noise strength will decrease and tend to a stationary
value.
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depicted by a one-state model, that is, the promoter is continuously ON. From (5.3), the
mean level and the noise strength at steady state are

m∗=
ν

δ
, Φ∗=1.

These results are exactly obtained in the one-state transcription model [2, 25].
Future work is required to calculate mRNA distribution P(m,t). In recent years, many

scholars have devoted themselves to solving the probability mass function [13,16,46,47].
However, in their models, the sojourn time that the gene stays in each ON or OFF state
follows an exponential distribution, but only a few of their studies have been conducted
on non-exponential sojourn times [16,46]. The method we proposed here provides a new
idea for calculating the probability mass function. However, some technical difficulties
need to be solved during the specific calculation process: Firstly, we need to give the
time-dependent expression of the probability mass function P(m,t|M0) when the gene is
always ON, where M0 is the initial mRNA number at t=0. Secondly, we need to estab-
lish the iterative formulas of P(m,Yn|MOn) and P(m,Zn|MEn) regarding the transcription
cycle n and calculate their limits. Lastly, we derive the stationary expression of P(m) by
averaging P(m,τ|mE) and P(m,τ|mO) over the sojourn times. The main difficulty is how
to construct iterative sequences of P(m,Yn|MOn) and P(m,Zn|MEn) and find their limits.

Future work is also required to apply the method to study the cell cycle-coupled gene
transcription for which mRNA synthesis rate varies with respect to the continuously in-
creasing cell volume during each cell cycle [16,26,41]. Since the duration of a cell cycle is
random, the waiting time for synthesizing a mRNA molecule may be assumed to follow
an arbitrary distribution. We shall focus on analyzing two categories of volume growth
forms: exponential and linear [26], and calculate transcription noise to study the mecha-
nisms that maintain expression homeostasis during the cell division cycle.

6 Conclusion

The two-state gene transcription model is a conceptual framework that aims to explain
the molecular mechanisms that regulate gene expression. According to this model, each
gene can exist in two discrete states – an active state and an inactive state. The switch be-
tween these two states is mediated by regulatory proteins, such as transcription factors,
that bind to specific DNA sequences near the gene. Usually, a set of transcription factors
is needed to initiate transcription. For example, some transcription factors bind to a pro-
moter to help form the transcription initiation complex. Other transcription factors bind
to regulatory sequences to stimulate or repress transcription of the target gene. All bind-
ings between transcription factors and promoter sequences/regulatory sequences can be
deemed to be a Poisson process.

In the classical two-state model, the lifetimes of the OFF and the ON states are as-
sumed to have exponential distributions. Many transcription models have been estab-
lished to explore outputs and fluctuation of transcripts among cells. Most of these mod-
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els are based on Markov processes. Usually, master equations could be easily obtained
under the Markov property. When multiple transcription factors are involved in gene
transcription, the lifetimes of the OFF and the ON states directly extract from the data
deviate from an exponential distribution [8, 37]. Then the activation rate and the inac-
tivation rate defined by (1.1) are time-dependent, which makes the construction of the
master equation impossible. To leap over such a barrier, we presented a hybrid transcrip-
tion model for connecting the random switching of promoter between active and inactive
states with a determined transcription fashion in each state. By employing the alternating
renewal process, we derived the time evolution of the mean transcription level and the
noise strength in each state. Both the transcription level and the noise strength fluctuate
with state switching between OFF and ON. Taking the Erlang distribution as an example,
we gave a detailed procedure for calculating the mean and the noise strength.

In the alternating renewal process, both the sequence of random variables Yn and the
sequence Zn are independent and identically distributed, but Yn and Zn are allowed to be
dependent. Thus, our computing method can be extended to the study of a non-Markov
system [46]. For instance, when Yn or Zn is uniformly distributed over an interval (0,T],
the transcription process is non-Markovian. By employing the computational method
used in this paper, we can explore the source of the variability in mRNA numbers pro-
duced in transcription systems with different lifetimes of transcription cycles.
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