
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.SO-2023-0020

Vol. x, No. x, pp. 1-40
xx 2024

Embedding Principle in Depth for the Loss

Landscape Analysis of Deep Neural Networks

Zhiwei Bai1, Tao Luo1,2, Zhi-Qin John Xu1,* and Yaoyu Zhang1,3,∗

1 School of Mathematical Sciences, Institute of Natural Sciences,
MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
2 CMA-Shanghai, Shanghai Artificial Intelligence Laboratory,
Shanghai 200240, P.R. China.
3 Shanghai Center for Brain Science and Brain-Inspired Technology,
Shanghai 200240, P.R. China.

Received 16 May 2023; Accepted 7 January 2024

Summary. In this work, we delve into the relationship between deep and shallow neu-
ral networks (NNs), focusing on the critical points of their loss landscapes. We discover
an embedding principle in depth that loss landscape of an NN “contains” all critical
points of the loss landscapes for shallower NNs. The key tool for our discovery is the
critical lifting that maps any critical point of a network to critical manifolds of any
deeper network while preserving the outputs. To investigate the practical implications
of this principle, we conduct a series of numerical experiments. The results confirm
that deep networks do encounter these lifted critical points during training, leading to
similar training dynamics across varying network depths. We provide theoretical and
empirical evidence that through the lifting operation, the lifted critical points exhibit
increased degeneracy. This principle also provides insights into the optimization ben-
efits of batch normalization and larger datasets, and enables practical applications like
network layer pruning. Overall, our discovery of the embedding principle in depth
uncovers the depth-wise hierarchical structure of deep learning loss landscape, which
serves as a solid foundation for the further study about the role of depth for DNNs.

AMS subject classifications: 68T07

Key words: Deep learning, loss landscape, embedding principle.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in various fields, such
as computer vision [18], natural language processing [4], and numerous scientific com-
puting applications [2,10,24]. Despite their widespread adoption and empirical achieve-

∗Corresponding author. Email addresses: bai299@sjtu.edu.cn (Z. Bai), luotao41@sjtu.edu.cn (T. Luo),
xuzhiqin@sjtu.edu.cn (Z. Xu), zhyy.sjtu@sjtu.edu.cn (Y. Zhang)

http://www.global-sci.org/csiam-am 1 ©2024 Global-Science Press

2 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

ments, our theoretical understanding of DNNs, particularly regarding their loss land-
scape and training dynamics, remains limited. The loss landscape of a DNN essentially
characterizes the optimization problem encountered during the network’s training pro-
cess. The study of this landscape is of paramount importance as it directly influences not
only the efficiency and final outcome of the training process, but also the generalization
in overparametered case. Regrettably, the high-dimensionality and non-convex nature of
DNNs render their loss landscapes notoriously challenging to comprehend and navigate.
The recent discovery of the embedding principle [9,20,30,32] offers insights for analyzing
the loss landscape of networks and establishes connections between the loss landscapes
of neural networks with varying widths. However, considering the extreme importance
of depth for DNNs, it prompts us to question whether a relationship exists between the
loss landscapes of networks with different depths. In this paper, we strive to address this
fundamental question by conducting a thorough analysis of critical points across varying
network depths.

Our theoretical investigation is motivated by the following experimental observa-
tions, which hint at the existence of an embedding relationship in depth. As illustrated
in Fig. 1, the training of NNs with varying hidden layers, learning the Iris and MNIST

0 25000 50000 75000 100000

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
o
s
s

stagnate at the same loss

(a) Loss (Iris)

0 25000 50000 75000 100000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra
c
y

stagnate at the same accuracy

(b) Accuracy (Iris)

0 1000 2000 3000 4000 5000

E����

0.00

0.02

0.04

0.06

0.08

0.10

Lo
��

stagnate at
the same loss

(c) Loss (MNIST)

0 1000 2000 3000 4000 5000

����	

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
�

0.8

0
�

1.0

A
c
c
u
ra
c
y stagnate at

the same
accuracy

(d) Accuracy (MNIST)

Figure 1: The training dynamics of networks of different depths exhibit similarity. (a, c) The training loss for
NNs of varying depths on the Iris and MNIST datasets, respectively. (b, d) The corresponding training accuracy
for NNs of varying depths on the Iris and MNIST datasets, respectively. The color-coded areas indicate periods
of slow change in training loss or training accuracy, indicating a possible encounter with a saddle point.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 3

datasets with small initialization and a small learning rate, exhibit a similar behavior.
Specifically, in Figs. 1(a) and 1(c), we notice that network trajectories of different depths
appear to stagnate at almost the same loss values, with virtually the same training accu-
racy, as demonstrated in Figs. 1(b) and 1(d). This intriguing observation suggests that the
loss landscapes of NNs of varying depths may share a set of critical functions (i.e. out-
put functions of critical points), by which a deep NN can experience a training process
similar to that of a shallower one.

Motivated by these observations, we prove in this work an embedding principle in
depth for fully-connected NNs, which can be intuitively stated as follows:

Embedding principle in depth: The loss landscape of any network “contains” all
critical points of all shallower networks.

Central to our proof of the embedding principle in depth is the introduction of a crit-
ical lifting operator. This operator, as proposed in this work, maps any critical point of
a shallower NN to critical manifolds (i.e. manifolds consisting of critical points sharing
the same loss value) of a target NN, while preserving outputs on the training inputs. Our
critical lifting operator predicts a rich class of “simple” critical points, which are derived
from shallower NNs and embedded in the loss landscapes of deeper NNs. This thereby
explicitly unveils the depth-wise hierarchical structure within the loss landscape of deep
learning.

To evaluate the practical implications of the embedding principle in depth, we con-
duct a comprehensive set of numerical experiments. These experiments reveal that the
practical training dynamics of deep NNs indeed encounter these lifted critical points, re-
sulting in similar training dynamics between deep and shallow networks. Furthermore,
we observe that through the critical lifting process, lifted critical points exhibit increased
degeneracy, which aligns with the empirically observed highly degenerate critical points
within the loss landscape [19]. The embedding principle in depth also provides new un-
derstanding to the optimization benefits of batch normalization [13] and the use of larger
datasets. In the final part of our experimental study, we explore the aspect of network
compression, proposing a method for layer pruning.

The remainder of the paper is organized as follows. In Section 2, we review related
works. In Section 3, we provide a brief introduction to deep neural networks and the
back propagation process. In Section 4, we lay out the theory of the embedding princi-
ple in depth. Section 5 presents a range of practical effects to corroborate our theoretical
insights. In Section 6, we contrast the differences between the embedding principles in
width and depth and discuss other network architectures beyond fully-connected net-
works. We conclude the paper in Section 7. Detailed proofs are provided in Appendix A.

2 Related works

The loss landscape of deep neural networks is notoriously complex due to its high-
dimensionality and non-convex nature [21]. Certain directions of a minimum can exhibit

4 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

markedly different sharpness [11]. Moreover, different training algorithms find global
minima with different properties, such as SGD often finds a flatter minimum compared
with GD [14,25]. Although previous studies have provided detailed investigations on the
loss landscape of shallow NNs with specific activations [3,5,22], the relationship between
critical points across different network architectures remains largely unexplored.

The recent work [32] introduced an embedding principle (in width) that establishes
a relationship between the critical points of a network and its wider counterparts. The
principle, which leverages one-step embeddings and their multi-step composition, sug-
gests that the critical points of a network can be embedded into the loss landscape of
wider NNs. Similar findings about these composition embeddings have been studied [8,
9,20]. Different from these works studying the effect of width, our work for the first time
establishes the embedding relation regarding the extremely important hyperparameter
of depth for DNNs.

Using a deeper NN has many advantages. In approximation, a deeper NN has more
expressive power [6, 7, 23]. In optimization, a deeper NN can learn data faster [1, 12, 28].
In generalization, it has been widely observed that overparameterized deep neural net-
works often generalize well in practice [29] and a deeper NN may achieve better gener-
alization for real-world problems [12]. Therefore, it is important to understand the effect
of depth to the DNN loss landscapes.

The proposed embedding principle in depth suggests a simplicity bias in depth,
which is consistent with previous works, for example, the frequency principle [17, 26,
27, 31], which states that DNNs often fit target functions from low to high frequencies
during the training, and the block structure [16], which identifies similar representations
across many layers in overparameterized networks.

3 Preliminaries

Deep neural networks. Consider a fully connected neural network (NN) with L(L≥1)
layers. Let i,k ∈ N, and for i < k, denote [i : k] = i,i+1,.. . ,k. Specifically, denote
[k] := 1,2,.. . ,k. The input is treated as layer 0 and the output as layer L. The width of
layer l is represented by ml , with m0=d and mL =d′.

For any parameter θ of the NN, we consider it as a 2L-tuple

θ=(θ|1,··· ,θ|L)=
(

W [1],b[1],. . .,W [L],b[L]
)

,

where W[l]∈R
ml×ml−1 and b[l]∈R

ml represent the weight and bias of layer l, respectively.
The parameters of layer l in θ are given as an ordered pair θ|l =(W[l],b[l]) for l∈ [L]. We
may use notation interchangeably and identify θ with its vectorization vec(θ)∈R

M with
M=∑

L−1
l=0 (ml+1)ml+1.

Given the parameter vector θ, the neural network function fθ(·) can be defined recur-

sively. First, let f
[0]
θ (x)=x for all x∈R

d. Then for l∈[L−1], f
[l]
θ is defined recursively as

f
[l]
θ (x)=σ

(

W [l] f
[l−1]
θ (x)+b[l]

)

.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 5

Finally, we denote

fθ(x)= f (x;θ)= f
[L]
θ (x)=W [L] f

[L−1]
θ (x)+b[L].

In the case of residual neural networks (ResNets), if the l-th layer employs a skip connec-
tion, then

f
[l]
θ (x)=σ

(

W [l] f
[l−1]
θ (x)+b[l]

)

+ f
[l−1]
θ (x).

To enable a comprehensible comparison between deep and shallow networks, we
provide a precise definition for the terms “deeper” and “shallower”.

Definition 3.1 (Deeper/Shallower). Given two NNs

NN
(

{ml}
L
l=0

)

, NN′
(

{m′
l},l∈{0,1,.. . ,q, q̂,q+1,.. . ,L}

)

.

If
m′

1=m1,··· ,m′
q=mq,m′

q̂≥min{mq,mq+1},m′
q+1=mq+1,··· ,m′

L=mL,

then we say NN′ is one-layer deeper than NN, and conversely, NN is one-layer shallower than
NN′. J-layer deeper (or shallower) is defined by the composition of one-layer deeper (or shallower).

Remark 3.1. If an NN is termed “deeper” than another NN, it signifies that the former
can be derived by incorporating additional layers of adequate widths to the latter. Note
that, for the sake of notational convenience, the layer index l for the deeper NN is utilized
as a placeholder index, adhering to a specific order of {0,1,2,.. . ,q,q̂,q+1,.. .,L}.

Loss function. We designate the training data and training inputs as S = {(xi,yi)}
n
i=1

and Sx={xi}
n
i=1, respectively, where xi∈R

d and yi∈R
d′ . For the sake of convenience, we

presuppose an unknown function f ∗ such that f ∗(xi)=yi holds for i∈ [n]. The empirical
risk can be expressed as

RS(θ)=
1

n

n

∑
i=1

ℓ
(

f (xi,θ), f ∗(xi)
)

=ESℓ
(

f (x,θ), f ∗(x)
)

,

where the expectation ESh(x) :=(∑n
i=1h(xi))/n is defined for any function h :Rd→R. We

denote the derivative of the loss function ℓ with respect to its first argument as ∇ℓ(y,y∗).
The training dynamics are treated as the gradient flow of RS(θ), i.e.







dθ

dt
=−∇θRS(θ),

θ(0)=θ0.

Back propagation. For every l ∈ [L], we define the error vectors z
[l]
θ =∇ f [l]ℓ and the

feature gradients g
[L]
θ = 1 along with g

[l]
θ = σ(1)(W [l] f

[l−1]
θ +b[l]) for l ∈ [L−1], where σ(1)

signifies the first derivative of σ. Furthermore, f
[l]
θ , for l ∈ [L], are referred to as feature

vectors. We denote the collections of feature vectors, feature gradients, and error vectors

6 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

by Fθ={ f
[l]
θ }L

l=1, Gθ={g
[l]
θ }L

l=1, Zθ={z
[l]
θ }L

l=1, respectively. The gradients can be computed
employing backpropagation as follows:































z
[L]
θ =∇ℓ,

z
[l]
θ =

(

W [l+1]
)⊤(

z
[l+1]
θ ◦g

[l+1]
θ

)

, l∈ [L−1],

∇W [l]ℓ=
(

z
[l]
θ ◦g

[l]
θ

)(

f
[l−1]
θ

)⊤
, l∈ [L],

∇b[l]ℓ=z
[l]
θ ◦g

[l]
θ , l∈ [L].

(3.1)

4 Theory of embedding principle in depth

Consider a neural network fθ(x), where θ represents the set of all network parameters
and x∈R

d is the input. We summarize the assumptions for all our theoretical results in
this work as follows.

Assumption 4.1. (i) L-layer (L≥1) fully-connected NN.

(ii) Training data S={(xi,yi)}
n
i=1 for n∈Z

+.

(iii) Empirical risk RS(θ)=ESℓ(fθ(x),y).

(iv) Activation function σ has a non-constant linear segment, e.g. ReLU, leaky-ReLU
and ELU.

(v) Loss function ℓ and activation function σ are subdifferentiable, i.e. a unique sub-
gradient can be assigned to each non-differentiable point.

Remark 4.1. For general smooth activations without a linear segment, e.g. tanh, our
results hold in the sense of approximation because they are arbitrarily close to linear in
a sufficiently small interval (for instance, around 0). Therefore, we also demonstrate our
results using the tanh activation in the subsequent numerical experiments.

Definition 4.1 (Affine Subdomain). For an activation σ with a non-constant linear segment,
an affine subdomain of σ is an open interval (a,b) satisfying that there exist λ,µ ∈ R (λ 6= 0),
σ(x)=λx+µ for any x∈ (a,b).

4.1 Lifting operator

We begin by introducing a lifting operator, as illustrated in Fig. 2.

Definition 4.2 (One-Layer Lifting). Given data S, consider an NN({ml}
L
l=0) and its one-

layer deeper counterpart, NN′({m′
l}, l ∈ {0,1,2,.. . ,q,q̂,q+1,.. .,L}). The one-layer lifting, de-

noted as TS, is a function that transforms any parameter θ=(W [1],b[1],··· ,W [L],b[L]) of NN
into a set M within the parameter space of NN′. Formally, M (where M :=TS(θ)) represents
a collection of all possible parameters θ′ of NN′ that satisfying the following three conditions:

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 7

Figure 2: Illustration of one-layer lifting. The pink layer is inserted into the left network to get the right network.

The input parameters W ′[q̂] and output parameters W ′[q+1] of the inserted layer are obtained by factorizing the

input parameters W [q+1] of (q+1)-th layer in the left network to satisfy layer linearization and output preserving
conditions.

(i) Local-in-layer condition: Weights of each layer in NN′ are inherited from NN except for
layer q̂ and q+1, i.e.















θ′|l =θ|l, l∈ [q]∪[q+2 : L],

θ′|q̂ =
(

W ′[q̂],b′[q̂]
)

∈R
m′

q̂×m′
q−1×R

m′
q̂ ,

θ′|q+1=
(

W ′[q+1],b′[q+1]
)

∈R
m′

q+1×m′
q̂×R

m′
q+1.

(4.1)

(ii) Layer linearization condition: For any j∈ [mq̂], there exists an affine subdomain (aj,bj) of σ

associated with λj,µj such that the j-th component (W ′[q̂] f
[q]
θ′ (x)+b′[q̂])j ∈ (aj,bj) for any

x∈Sx.

(iii) Output preserving condition

{

W ′[q+1]diag(λ)W ′[q̂]=W [q+1],

W ′[q+1]diag(λ)b′[q̂]+W ′[q+1]µ+b′[q+1]=b[q+1],
(4.2)

where
λ=[λ1,λ2,··· ,λmq̂

]⊤∈R
m′

q̂ , µ=[µ1,µ2,··· ,µmq̂
]⊤∈R

m′
q̂ ,

and diag(λ) denotes the diagonal matrix formed by vector λ.

Remark 4.2. Intuitively, the lifting operator described above elevates a point θ from NN
to a set M within a higher-dimensional space. In general, M is a finite union of mani-
folds instead of a set of isolated points. To highlight this point, we refer to the mapped
set M :=TS(θ) as a “manifold” with slight abuse of terminology throughout this paper.
For a similar reason, we also refer to the set of critical points sharing the same loss value
as “critical manifold”.

8 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

Remark 4.3. The one-layer lifting operator describes the generic process of mapping
a point from a lower-dimensional space to a set within a higher-dimensional space.
Any θ′ that belongs to the mapped set as outlined in Definition 4.2 is termed a “lifted
point”. For clarity, when discussing specific operations that map a point θ of NN to a spe-
cific point θ′∈TS(θ) of NN′, we use the term “embedding” to describe this operation.

As illustrated in Fig. 2, a one-layer lifting is realized by inserting a hidden layer, de-
picted here as the pink layer (q̂-th layer) in the right network. The outcome of a one-layer
lifting is a manifold of the parameter space of the right network, which comprises each
parameter vector that satisfies the following constraints: The parameters W ′[q̂],b′[q̂] of
the inserted layer meet the layer linearization condition, ensuring this layer operates like
a linear layer when applied to the training inputs Sx ={xi}

n
i=1. Additionally, the param-

eters W ′[q+1],b′[q+1] of (q+1)-th layer fulfill the output preserving condition, making the
composition of the q̂-th layer and the (q+1)-th layer in the right network equivalent to
the (q+1)-th layer in the left network.

Because the factorized weights satisfying both layer linearization and output preserv-
ing conditions always exist, we have the following existence result for one-layer lifting.

Lemma 4.1 (Existence of One-Layer Lifting). Given data S, an NN({ml}
L
l=0) and its one-

layer deeper counterpart, NN′({m′
l}, l ∈{0,1,2,.. . ,q,q̂,q+1,.. .,L}), the one-layer lifting TS ex-

ists, i.e. TS(θshal) is not empty for any parameter θshal of NN.

The proof of this lemma is given in Appendix A (Lemma A.1).

4.2 Embedding principle in depth

The multi-layer lifting is defined as the composition of multiple one-layer liftings. Con-
sequently, the parameters of any neural network can be lifted to a parameter manifold of
any deeper neural network through a multi-layer lifting. Both one-layer and multi-layer
liftings exhibit two key attributes: network properties preservation and criticality preser-
vation. To demonstrate these two properties, we first consider the following lemma.

Lemma 4.2 (Computation of Feature Vectors, Feature Gradients and Error Vectors). Given
data S, consider an NN({ml}

L
l=0) and its one-layer deeper counterpart, NN′

(

{m′
l}, l∈{0,1,2,.. . ,

q,q̂,q+1,.. . ,L}
)

. Let TS denote the one-layer lifting and θshal be any parameter of NN. Then, for

any lifted point θ′
deep∈TS(θshal), the following conditions hold: There exist λ,µ∈R

m′
q̂ such that

for any x∈Sx,

(i) feature vectors in Fθ′deep

f
[l]
θ′deep

(x)= f
[l]
θshal

(x), l∈ [L],

f
[q̂]
θ′deep

(x)=diag(λ)
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ,

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 9

(ii) feature gradients in Gθ′deep

g
[l]
θ′deep

(x)= g
[l]
θshal

(x), l∈ [L],

g
[q̂]
θ′deep

(x)=λ,

(iii) error vectors in Zθ′deep

z
[l]
θ′deep

(x)=z
[l]
θshal

(x), l∈ [q−1]∪[q+1 : L],

z
[q̂]
θ′deep

(x)=
(

W
′[q+1]

)⊤
(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

,

z
[q]
θ′deep

(x)=
(

W
′[q̂]

)⊤
(

z
[q̂]
θ′deep

(x)◦λ
)

.

The proof of this lemma is given in Appendix A (Lemma A.2).

Using Lemma 4.2, we can promptly derive the property of network preservation.
This underlines the preservation of the output function by the lifting process during the
transformation from a shallower to a deeper neural network.

Proposition 4.1 (Network Properties Preserving). Given data S, consider an NN({ml}
L
l=0)

and its one-layer deeper counterpart, NN′({m′
l}, l∈{0,1,2,.. . ,q,q̂,q+1,.. .,L}). Let TS denote the

one-layer lifting and θshal be any parameter of NN. Then, for any lifted point θ′
deep ∈TS(θshal),

the following conditions hold:

(i) outputs are preserved: fθ′deep
(x)= fθshal

(x) for x∈Sx,

(ii) empirical risk is preserved: RS(θ
′
deep)=RS(θshal),

(iii) network representations are preserved for all layers,

span

{

{(

f
[q̂]
θ′deep

(X)
)

j

}

j∈[m′
q̂]
∪{1}

}

=span

{

{(

f
[q]
θshal

(X)
)

j

}

j∈[mq]
∪{1}

}

,

and for the other index l∈ [L],

span

{

{(

f
[l]
θ′deep

(X)
)

j

}

j∈[m′
l]
∪{1}

}

=span

{

{(

f
[l]
θshal

(X)
)

j

}

j∈[ml]
∪
{

1
}

}

,

where

f
[l]
θ (X)=

[

f
[l]
θ (x1), f

[l]
θ (x2),··· , f

[l]
θ (xn)

]⊤
∈R

n×m′
q̂ ,

and 1∈R
n is the all-ones vector.

The proof of this proposition is given in Appendix A (Proposition A.1).

10 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

The most significant characteristic of the lifting operator is its preservation of critical-
ity. That is to say, if a shallow network is at a critical point, it will still be at a critical point
when transformed into a deeper network through the lifting operator.

Proposition 4.2 (Criticality Preserving). Given data S, consider an NN({ml}
L
l=0) and its

one-layer deeper counterpart, NN′
(

{m′
l}, l∈{0,1,2,.. . ,q,q̂,q+1,.. . ,L}

)

. Let TS denote the one-
layer lifting and θshal be any parameter of NN. If θshal of NN satisfies ∇θRS(θshal) = 0, then
∇θ′RS(θ

′
deep)=0 for any lifted point θ′

deep∈TS(θshal).

The proof of this proposition is given in Appendix A (Proposition A.2).

Owing to the criticality preserving property, we term one-layer or multi-layer lifting
as critical lifting. With the aforementioned results, we now establish an embedding prin-
ciple in depth, which can be intuitively described as follows: The loss landscape of any
DNN contains a hierarchy of critical manifolds, each of which is lifted from the critical
points of the loss landscapes of all its shallower counterparts.

Theorem 4.1 (Embedding Principle in Depth). Given data S and an NN′({m′
l}

L′

l=0), for any
parameter θc of any shallower NN({ml}

L
l=0) satisfying ∇θRS(θc)=0, there exists parameter θ′

c

in the loss landscape of NN′({m′
l}

L′

l=0) satisfying the following conditions:

(i) fθ′c
(x)= fθc(x) for x∈Sx,

(ii) ∇θ′RS(θ
′

c)=0.

The proof of this theorem is given in Appendix A (Theorem A.1).

Remark 4.4. Although we only prove output preserving for training inputs, it is im-
portant to note that the output function of the neural network is indeed preserved over
a broader area of the input space including at least a neighbourhood of each training in-
put (see Proposition A.4 in Appendix A for proof). Consequently, if the training dataset
is sufficiently large and representative, then the lifting operator effectively preserves the
generalization performance.

Leveraging critical lifting, the aforementioned embedding principle in depth pro-
vides a clear picture about the hierarchical structure of critical points/manifolds in depth
within a DNN’s loss landscape. This hierarchical structure profoundly influences the
nonlinear training behavior of a deep network, as any nearby training trajectory tends to
gravitate towards these points/manifolds.

Critical lifting delineates the relationship between the critical points of deep networks
and their shallow counterparts. Notably, it also preserves the positive and negative iner-
tia indices of the Hessian matrix.

Proposition 4.3 (Positive and Negative Index of Inertia Preserving). Given data S, consider
an NN({ml}

L
l=0), and its deeper counterpart NN′({m′

l}
L′

l=0). Let TS denote the corresponding

critical lifting and θshal be any parameter of NN. Then, for any critical embedding E :RM→R
M′

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 11

resulting from TS, denote θ′
deep := E(θshal), the number of positive and negative eigenvalues of

Hessian matrix HS(θ
′
deep) equals the counterparts of HS(θshal).

The proof of this proposition is given in Appendix A (Proposition A.5).

Utilizing Proposition 4.3, we immediately conclude that through critical lifting, the
degeneracy of a critical point will increase.

Corollary 4.1 (Incremental Degeneracy of Critical Point Through Lifting). Given data S,
consider an NN({ml}

L
l=0), and its deeper counterpart NN′({m′

l}
L′

l=0). Let TS denote the cor-
responding critical lifting and θshal ∈ R

M be a critical point of NN. Then, any lifted point
θ′

deep∈TS(θshal)⊆R
M′

possesses M′−M additional degrees of degeneracy in comparison to θshal.

The proof of this corollary is given in Appendix A (Corollary A.1).

It is important to note that critical lifting is data-dependent, and the nature of this
data-dependence is characterized by the following proposition.

Proposition 4.4 (Data and Critical Lifting). Given data S, S′, consider an NN({ml}
L
l=0) and

its deeper counterpart NN′
(

{m′
l}

L′

l=0. Let TS and TS′ denote the respective critical liftings and
θshal be any parameter of NN. If S′⊆S, then TS(θshal)⊆TS′(θshal).

The proof of this proposition is given in Appendix A (Proposition A.3).

This result indicates that increasing training data shrinks any lifted manifold to its
subset. The implication is that enlarging the training dataset is a viable strategy for di-
minishing the lifted critical manifolds, which can consequently expedite the decay of the
training loss, as demonstrated in the subsequent experimental study.

5 Numerical experiments

The theory of the embedding principle in depth highlights the existence of a class of
“simple” critical points inherited from shallower neural networks. A natural question
arises as to whether deep networks encounter these lifted critical points. Moreover, it is
essential to understand the influence of these critical points on the training dynamics. In
this section, we conduct comprehensive experiments to study these questions. In Sec-
tion 5.1, we briefly describe the experimental setup. Section 5.2 is dedicated to a detailed
comparison of the training dynamics between deep and shallow networks. Section 5.3 in-
vestigates the impact of batch normalization and larger datasets on optimization. Lastly,
in Section 5.4, we explore the practical application of layer-wise network pruning.

5.1 Experimental setup

Measuring layer linearization by minimal Pearson correlation (MPC). To detect lifted
critical points in our experiments, we propose a method to measure their key feature,

12 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

i.e. layer linearization. Let f̃
[l]
θ = W [l] f

[l−1]
θ +b[l] ∈ R

ml and f
[l]
θ = σ(f̃

[l]
θ) ∈ R

ml denote
the input and output of neurons in layer l, respectively. For each neuron in a layer, the
absolute value of the Pearson correlation coefficient is utilized to measure the extent of
linearization for each neuron. By taking the minimum over the whole layer, we obtain
the following measure of the extent of linearization for the l-th layer:

MPC
(

f
[l]
θ , f̃

[l]
θ

)

= min
j∈[ml]

∣

∣

∣

∣

ρ

(

(

f
[l]
θ

)

j
,
(

f̃
[l]
θ

)

j

)
∣

∣

∣

∣

∈ [0,1], (5.1)

where (f
[l]
θ)j, (f̃

[l]
θ)j represent the j-th components of f

[l]
θ and f̃

[l]
θ , respectively, and

ρ((f
[l]
θ)j, (f̃

[l]
θ)j) denotes the Pearson correlation coefficient.

Remark 5.1. To determine whether a critical point in an experiment is a lifted critical
point, two conditions must be met: (i) the MPC of a layer equals 1, and (ii) merging that
layer with the subsequent layer leads to a critical point of the shallower neural network.

In the subsequent experiments conducted, fully-connected networks are predomi-
nantly utilized. The input dimension, denoted as d, and output dimension, represented
by d′, are determined by the respective training dataset. Each hidden layer has the same
width m. All parameters are initialized by a Gaussian distribution with mean zero and
variance specified in each experiment. To investigate the training behavior of DNNs with
feature learning, we employ relatively small initializations to enhance the nonlinearity of
training, which stays away from the neural tangent kernel (NTK) regime. To meticu-
lously examine the dynamics during the training process, a full-batch gradient descent
approach is employed, combined with a small learning rate. More details of experiments
are presented in Appendix C.

5.2 Training dynamics of deep and shallow neural networks

5.2.1 Deep neural networks encounter lifted critical points during practical training

To investigate whether deep neural networks encounter lifted critical points during train-
ing, we train tanh NNs with different depths (width m=50) on the data shown in Fig. 3(b)
and the Iris dataset in Fig. 4. During training, we trace the evolution of the MPC for each
hidden layer computed using Eq. (5.1).

As depicted in Fig. 3(a), the three-hidden-layer NN first stagnates at the same loss
value as the single-hidden-layer NN, displaying nearly the same output function as il-
lustrated in Fig. 3(b). According to Fig. 3(c), the first two hidden layers exhibit strong
linearity during stagnation. In Fig. 3(d), we observe that merging the effectively linear
layers using Eq. (4.2) results in a critical point of the single-hidden-layer NN.

A similar phenomenon is observed for the Iris dataset in Fig. 4. As shown in Fig. 4(a),
the three-hidden-layer NN first stagnates at the same loss value as the single-hidden-
layer NN, displaying nearly the same training and test accuracy as illustrated in Fig. 4(b).

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 13

(a) Training loss (b) Output at the plateau

(c) Evolution of MPC (d) Loss of reduced NN

Figure 3: Deep neural networks encounter lifted critical points during training on synthetic data. (a) The
training loss for single-hidden-layer and three-hidden-layer NNs with width m=50. (b) The outputs of NNs with
different depths at the same loss value indicated by the colored span in (a). (c) The extent of layer linearization
for different hidden layers during the training process of the three-hidden-layer NN. (d) Training loss trajectory of
the reduced single-hidden- layer NN. The green dot in (a) and (c) is selected as a representative for comparison.

Upon examining the confusion matrices of the networks at this plateau, we observe that
both networks correctly classify two of the three classes and completely misclassify the
third class, achieving an accuracy of 66.7%. According to Fig. 4(c), the last two hidden
layers exhibit strong linearity during stagnation. In Fig. 4(d), we find that merging the
effectively linear layers using Eq. (4.2) results in a critical point of the single-hidden-
layer NN.

We observe similar phenomena for ReLU NNs and residual-connected NNs (ResNets)
in Figs. 10 and 11 in Appendix B. These results confirm that deep NNs indeed encounter
critical points lifted from shallower NNs with small initialization. Moreover, the study
conducted by [15] utilized linear centered kernel alignment (CKA) as a metric to assess
the similarity between different layers. Their experiments on CIFAR-10 and ImageNet-
1000 revealed that a “block structure” emerges when the network size is much larger
than the dataset size, with many layers exhibiting a high degree of similarity. In Proposi-
tion A.6 of Appendix A, we prove that this similarity between layers indeed reflects the
degree of linear correlation between representations across layers. We further investigate
the impact of initialization and dataset size on layer linearization in Appendix B (see
Fig. 12). Generally speaking, it is common to observe layer linearization when a deep

14 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

(a) Training loss (b) Output at the plateau

(c) Evolution of MPC (d) Loss of reduced NN

Figure 4: Deep neural networks encounter lifted critical points during training on Iris data. (a) The training loss
for single-hidden-layer and three-hidden-layer NNs with width m= 50. (b) The training accuracy of NNs with
different depths at the same loss value indicated by the colored span in (a). The accuracy plateau is at 66.7%
for both train and test sets. (c) The extent of layer linearization for different hidden layers during the training
process of the three-hidden-layer NN. (d) Training loss trajectory of the reduced single-hidden-layer NN. The
green dot in (a) and (c) is selected as a representative for comparison.

network is trained on a simple task with small initialization. This occurrence of layer
linearization significantly reduces the network’s complexity and thus may be crucial in
contributing to the generalization of deep networks.

Remark 5.2. Generally, reducing the scale of initialization enhances the nonlinear feature
learning dynamics of DNNs. With a properly small initialization, the training dynamics
tend to experience lifted critical points from shallower NNs, which implicitly help control
the complexity of DNNs during training. However, a too small initialization scale may
result in undesired prolonged stagnation at critical points. Remarkably, standard initial-
ization schemes like Xavier/Kaiming-He strike a balance between feature learning and
training efficiency with a proper initialization scale, ensuring that the training dynamics
are both efficient and sufficiently nonlinear.

5.2.2 Incremental degeneracy of critical points through embedding

Empirical studies have shown that the Hessian matrix of the minimizer, derived from
training, possesses a significant count of zero or near-zero eigenvalues, highlighting the

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 15

existence of highly degenerate critical points within the loss landscape [19]. Our findings,
as illustrated in Figs. 3 and 4, imply that deep networks often encounter critical points
inherited from their shallower counterparts. To empirically validate that lifted critical
points have higher degeneracy, we design experiments to compute the eigenvalues of
their respective Hessian matrices at the empirical critical points.

Specifically, we train a single-hidden-layer ReLU NN with width m= 2 to learn the
data in Fig. 3(b) shown in Fig. 5(a) or the Iris dataset in Fig. 5(b) to a empirical critical
point (the L1 norm of the gradient ≤ 10−4). We then embed this critical point through
a one-layer embedding and a two-layer embedding to NNs with 2 hidden layers and
3 hidden layers, with each hidden layer having the same width, respectively. To com-
pute the eigenvalues of the Hessian matrix with a large condition number accurately,
we conducted 100 random orthogonal similarity transformations on the matrix. We took
the average from these 100 trials to obtain a more reliable set of eigenvalues. We then
pinpoint locations where there are evident gaps in eigenvalue magnitudes, as delineated
by the auxiliary line in Fig. 5. This allows for differentiation between zero and non-
zero eigenvalues, serving as a mechanism to ascertain empirical degeneracy. Detailed
methodology can be found in Appendix C. As illustrated in Fig. 5, each embedding step
introduces six more zero eigenvalues to the Hessian matrix due to the introduction of two
neurons, resulting in six additional parameters. This finding is consistent with Proposi-
tion 4.3 and potentially elucidates the origin of a particular type of degeneracy at critical
points within the loss landscape.

(a) Synthetic data (ReLU) (b) Iris data (ReLU)

Figure 5: Incremental degeneracy of critical points through embedding. (a,b) The eigenvalues of Hessian of
ReLU NNs at the critical points embedded from the single hidden layer NN for learning data in Fig. 3(b) and Iris
data, respectively. The results for each plot are averaged over 100 random orthogonal similarity transformations.
The auxiliary dashed lines in (a,b) delineate the empirical boundary between zero and non-zero eigenvalues. We
perform the embedding operation by factorizing one hidden layer into k hidden layers (k= 2,3), whose input
weights are identity and biases are selected to translate the input range into the affine subdomain.

16 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

5.3 The effects of batch normalization and larger dataset

Since layer linearization is a key feature in encountering lifted critical points and results
in slower training, we investigate how batch normalization and larger training sets can
affect layer linearization and subsequently lead to accelerated training.

5.3.1 Batch normalization avoids lifted critical points

Batch normalization (BN) normalizes the layers’ inputs by re-centering and re-scaling:
BN(x) = γ◦((x−µ̂B)/σ̂B)+β with a default initialization γ = 1, β = 0. Empirically, us-
ing BN can greatly speed up NN training. Intuitively, when a neuron’s input range be-
comes too small, its nonlinear activation function behaves effectively like a linear func-
tion. In such cases, batch normalization can enhance the nonlinearity of each neuron by
effectively rescaling its input range to O(1) and thus suppress layer linearization. As
embedding principle in depth unravels a large family of lifted critical points with layer
linearization, avoiding these critical points through suppressing layer linearization may
be an important mechanism underlying the training efficiency of BN in practice.

To verify this mechanism, we perform the following experiment shown in Fig. 6. We
train a 2-hidden-layer tanh NN (width m = 50) to learn the data in Fig. 3(b), and com-

(a) Training loss (b) γ=0.1

(c) γ=1.0 (d) γ=1.5

Figure 6: Batch normalization avoids lifted critical points during training. (a) Trajectories of training loss
without BN and with BN of different initial values. (b-d) The extent of layer linearization for all hidden layers
with BN of scaling parameter γ initialized at 0.1,1.0 or 1.5, respectively. The auxiliary dash lines in (a) and (c)
correspond to the same epoch.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 17

pare the training trajectories without BN and with BN of scaling parameter γ initialized
at 0.1,1.0, or 1.5. Conforming with our intuition, a larger γ better suppresses layer lin-
earization throughout the training as shown in Figs. 6(b)-6(d). Moreover, the stagnation
is significantly alleviated with a larger γ. There is even no stagnation for γ initialized at
1.5, signifying complete avoidance of lifted critical points as predicted by above mecha-
nism.

5.3.2 Optimization benefit of larger dataset

Proposition 4.4 characterizes the data dependency of critical lifting. The intuition is that
a larger dataset increases the difficulty of layer linearization, thus helping reduce the crit-
ical manifolds. This result provides a seemingly counter-intuitive prediction that larger
dataset may be more easily fitted due to the reduced critical manifolds lifted from shal-
lower NNs. This prediction is verified by the following experiment in Fig. 7.

We train a tanh NN with 3 hidden layers (width m=50) to learn data (data size n=70)
of Fig. 3(b) to a critical point (the red point in Fig. 7(a)). We then continue (blue curve)
or switch to larger datasets (orange and green curves) for training. As shown in Fig. 7(a),
more training data leads to faster escape from the lifted critical point. Figs. 7(b)-7(d)
further trace the extent of layer linearization for each hidden layer on datasets of different

(a) Training loss (b) Data size =70

(c) Data size =80 (d) Data size =100

Figure 7: Optimization benefit of larger dataset. (a) The training loss of three-hidden-layer NN with width
m=50 for learning data of Fig. 3(b). We sample 70,80 and 100 data points equally spaced around 0, respectively.
The red dot in (a) is selected for switching dataset. (b-d) The extent of layer linearization for all hidden layers
on datasets of different size, respectively. The red dots correspond to the epoch to switch dataset. The auxiliary
dash lines correspond to the epoch where NNs escape from the lifted critical manifold.

18 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

sizes, respectively. From Figs. 7(c)-7(d), we can clearly see that more data facilitate the
expression of nonlinearity of hidden layers (see the abrupt reductions of MPC at the red
dot). This helps the network to escape the critical manifold lifted from a single-hidden-
layer NN, which aligns with the implications of Proposition 4.4.

5.4 Network pruning

5.4.1 Layer pruning of DNNs with layer linearization

The embedding principle in depth predicts a family of critical points with layer lineariza-
tion. These critical points intrinsically come from shallower NNs, thus possessing good
layer pruning potential. To realize such pruning potential in practice, we propose the
method of detecting and merging effectively linear layers, which works as follows. We
train a deep 10-hidden-layer tanh NN (width m = 50) on the MNIST dataset. At the
red dot in Fig. 8(a), the training loss decreases very slowly, presumably is very close to
a global minimum. As shown in Fig. 8(b), there are 5 effective linear layers (MPC>0.99) at
this point. We merge these effective linear layers by properly multiplying their weights,
thereby pruning the NN of 10 hidden layers to 5 hidden layers. The parameters before

(a) Initial NN (b) Evolution of MPC

(c) Pruned NN (d) Prediction similarity

Figure 8: Layer pruning of DNNs with layer linearization. (a) The training process of the original 10-hidden-layer
network on MNIST dataset. The red dot is selected for layer pruning. (b) The extent of layer linearization
for all hidden layers during the training process. (c) The training process after layer pruning. (d) Prediction
similarity between initial and reduced network on the test dataset. For each grid, color indicates the ratio of
that prediction pair (i, j) over all samples predicted as j by the original 10-hidden-layer NN.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 19

reduction is denoted by θori and after reduction by θredu. We further train the pruned
NN from θredu as shown in Fig. 8(c) which quickly fall into the same loss value as the
red point in Fig. 8(a). We then compare the prediction between original model and the
pruned model at the corresponding red point on 10000 test data as shown in Fig. 8(d). Al-
though our critical lifting does not preserve the output function over the entire domain
of input, we still observe well agreement of these two models (overall ∼98.54%), which
implies that this reduction can approximately preserve the generalization performance
(95.4% to 95.27%).

6 Discussion

6.1 Differences between embedding principle in width and in depth

Our work draws inspiration from the embedding principle in width [32], but, for the first
time, addresses the embedding relation in depth for DNNs. Though our depth-based
critical lifting operator shares the same spirit with the width-based critical embedding
operator in [32], it is important to note several key distinctions, as follows:

(i) The target NN. The depth-based critical lifting maps to the parameter space of
a deeper NN whereas the width-based critical embedding maps to the parameter space
of a wider NN.

(ii) The requirement for the activation function. The depth-based critical lifting re-
quires a layer linearization condition, which can be satisfied for any activation with
a non-constant linear segment, such as ReLU, leaky-ReLU, and ELU, and can be approx-
imately satisfied for general smooth activations, including sigmoid, tanh, and gelu. On
the other hand, the width-based critical embedding works for any activation function.

(iii) The type of mapping. The depth-based critical lifting is a set-valued function
which maps any parameter vector to a manifold, whereas the width-based critical em-
bedding is a vector-valued function.

(iv) The output preserving property. The depth-based critical lifting preserves the
DNN outputs at the training dataset, whereas the width-based critical embedding pre-
serves the DNN output function over the entire input domain.

(v) The data dependency. The depth-based critical lifting is data-dependent, whereas
the width-based embedding operator is independent on data. For depth-based critical
lifting, we prove that more data leads to reduced lifted manifolds in Proposition 4.4,
whereas the width-based critical embedding is data-independent.

The key distinctions (iii)-(v) stem from the intrinsic differences in expressiveness
when adding width versus depth to a DNN. Specifically, the function space of a nar-
row NN is strictly a subset of the function space of any wider NN, as referenced in [9,32].
However, a similar (embedding) relation regarding the expressiveness can generally only
be expected in the sense of approximation when comparing shallower and deeper NNs.

20 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

6.2 Other network architectures

The embedding principle in depth is derived from the inherent layer stacking nature of
deep neural networks, where each layer can be linearly factorized into multiple layers.
Therefore, our theoretical findings proven for fully-connected DNNs can be naturally
extended to other neural network architectures, such as convolutional neural networks
and residual-connected neural networks. For instance, when dealing with a residual-
connected network, the only alteration required to derive its one-layer lifting operator is
a modification of the output-preserving condition (see Definition A.2 in Appendix A for
details).

It should be noted that for residual-connected networks, simply assigning zero values
to the parameters of the inserted block can create a trivially criticality-preserving lifting,
which naturally satisfies the layer linearization condition. However, it is important to
underscore that the practical experience of encountering these lifted critical points during
training is a more crucial determinant of the importance of different lifting techniques
than the mere existence of such embeddings. Indeed, such trivially lifted critical points
are seldom observed in practice. On the contrary, the lifted critical points we propose,
which are accompanied by layer linearization, are frequently observable in experimental
setups, as illustrated in Fig. 11 in Appendix B. Therefore, the critical lifting operator
proposed in this work is of special value for studying the practical training behavior
of DNNs.

6.3 Simplicity bias

Our embedding principle in depth, combined with the prior embedding principle in
width, explicitly characterizes the hierarchical structure of DNN loss landscape in both
width and depth dimensions. This hierarchical structure highlights the potential for non-
overfitting, even when a significantly large NN is employed to fit limited training data
generated by a comparatively smaller (i.e. shallower and narrower) NN. The intuition
here is that a large NN, guided by the hierarchy of “simple” critical points/manifolds
lifted/embedded from shallower and narrower NNs, may learn a “simple” interpolation
from a small NN through training. This potential is further corroborated by our numeri-
cal experiments shown in Figs. 3, 4, 6, 7 and 8, which indicate that the “effective” depth,
i.e. the number of nonlinear layers, often gradually increases during the training of deep
NNs. In light of these findings, it is tempting to conjecture that, with proper initializa-
tion, a large DNN could adaptively increase its “effective” depth and width based on the
complexity of the training data. We will examine this conjecture in our future works.

7 Conclusion

In this paper, we discover an embedding principle in depth, establishing that the loss
landscape of a deep NN inherits all critical points from shallower NNs. We introduce the

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 21

critical lifting operator that serves to prove this principle and provide comprehensive de-
tails about it. Furthermore, we offer empirical evidence demonstrating the vast insights
provided by this principle, which contribute to the highly degenerate critical points of
deep networks, the acceleration effect of batch normalization and larger datasets, and
the process of layer pruning. It should be noted that the experiments conducted in this
work serve as proofs of concept for these novel insights. Further systematic experimen-
tal studies are needed to gain a full understanding of the practical significance of these
insights.

Overall, our discovery of the embedding principle in depth, together with the pre-
vious embedding principle in width, provides a comprehensive picture of the intrinsic
hierarchical structure of the DNN loss landscape. This picture strongly supports the em-
pirically observed similarities in training and generalization between NNs of varying
sizes, thereby shedding light on the non-overfitting mystery of large NNs.

Appendix A. Proofs

In this section, we give all proofs for our theoretical results mentioned in the main text.

Definition A.1 (One-Layer Lifting). Given data S, consider an NN({ml}
L
l=0) and its one-layer

deeper counterpart, NN′({m′
l},l ∈ {0,1,2,.. . ,q,q̂,q+1,.. . ,L}). The one-layer lifting, denoted

as TS, is a function that transforms any parameter θ=(W [1],b[1],··· ,W [L],b[L]) of NN into a set
M within the parameter space of NN′. Formally, M (where M :=TS(θ)) represents a collection
of all possible parameters θ′ of NN′ that satisfying the following three conditions:

(i) Local-in-layer condition: Weights of each layer in NN′ are inherited from NN except for
layer q̂ and q+1, i.e.











θ′|l =θ|l for l∈ [q]∪[q+2 : L],

θ′|q̂ =(W ′[q̂],b′[q̂])∈R
m′

q̂×m′
q−1×R

m′
q̂ ,

θ′|q+1=(W ′[q+1],b′[q+1])∈R
m′

q+1×m′
q̂×R

m′
q+1.

(ii) Layer linearization condition: For any j∈ [mq̂], there exists an affine subdomain (aj,bj) of σ

associated with λj,µj such that the j-th component (W ′[q̂] f
[q]
θ′ (x)+b′[q̂])j∈(aj,bj) for any x∈Sx.

(iii) Output preserving condition

{

W ′[q+1]diag(λ)W ′[q̂]=W [q+1],

W ′[q+1]diag(λ)b′[q̂]+W ′[q+1]µ+b′[q+1]=b[q+1],

where λ=[λ1,λ2,··· ,λmq̂
]⊤∈R

m′
q̂ ,µ=[µ1,µ2,··· ,µmq̂

]⊤∈R
m′

q̂ , and diag(λ) denotes the diagonal
matrix formed by vector λ.

22 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

A.1 Existence of one-layer lifting

Lemma A.1 (Existence of One-Layer Lifting). Given data S, an NN({ml}
L
l=0) and its one-

layer deeper counterpart, NN′({m′
l}, l ∈{0,1,2,.. . ,q,q̂,q+1,.. .,L}), the one-layer lifting TS ex-

ists, i.e. TS(θshal) is not empty for any parameter θshal of NN.

Proof. We prove this lemma by construction. From the definition of one-layer deeper, we
know that

m′
1=m1,··· ,m′

q =mq,m′
q̂ ≥min{mq,mq+1},m′

q+1=mq+1,··· ,m′
L =mL.

Without loss of generality, we assume the width of the inserted layer m′
q̂ is equal to

min{mq,mq+1}. Our construction can be easily extended to the case with a wider in-
serted layer by adding zero-neurons, i.e. neurons whose input and output weights are
all zero.

For any parameter θshal =(W [1],b[1],··· ,W [L],b[L]) of the NN, we construct a θ′
deep in

TS(θshal) as follows. Since the activation function σ has a non-constant linear segment,
there exists an affine subdomain (a,b) associated with λ,µ∈R (λ 6= 0) such that σ(x) =
λx+µ for x ∈ (a,b). Let [xlow,xup]⊆ (a,b) (xlow 6= xup) be a closed interval of the affine
subdomain and λ=λ1∈R

mq̂ ,µ=µ1∈R
mq̂ , where 1∈R

mq̂ is the all-ones vector. Now we
discuss in two cases:

(1) min{mq,mq+1}=mq+1.

Denote training data by S={(xi,yi)}
n
i=1 and

f̃
[q+1]
θshal

=W [q+1] f
[q]
θshal

+b[q+1]∈R
mq+1 ,

xmin= min
i∈[n],j∈[mq+1]

{(

f̃
[q+1]
θshal

(xi)
)

j

}

,

xmax= max
i∈[n],j∈[mq+1]

{(

f̃
[q+1]
θshal

(xi)
)

j

}

,

where (f̃
[q+1]
θshal

(xi))j is the j-th component of f̃
[q+1]
θshal

(xi).

Now we transform the input range [xmin,xmax] into the affine subdomain [a,b] of the
activation function σ through an affine transformation. To this end, we further discuss in
two cases:

Case 1: xmin 6= xmax.

Let

ξ=
xup−xlow

xmax−xmin
∈R, W ′[q̂]= ξW [q+1]∈R

mq̂×mq ,

b′[q̂]= ξb[q+1]+(xlow−ξxmin)1∈R
mq̂ ,

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 23

where 1 is the all-ones vector. And then we let W ′[q+1]= Id/λξ∈R
mq+1×mq̂ , where Id is the

identity matrix, and

b′[q+1]=b[q+1]−W ′[q+1]diag(λ)b′[q̂]−W ′[q+1]µ∈R
mq+1 .

Finally, we let

θ′
deep=

(

W [1],b[1],··· ,W [q],b[q],W ′[q̂],b′[q̂],W ′[q+1]b′[q+1],··· ,W [L],b[L]
)

.

Now we verify that θ′
deep ∈TS(θshal), i.e. θ′

deep satisfies the three conditions of one-layer

lifting. Firstly, by the construction of θ′
deep, the local-in-layer condition is satisfied auto-

matically.

Next, for any j∈ [mq̂], there exists an affine subdomain (a,b) associated with λ,µ such
that the j-th component

(

W ′[q̂] f
[q]
θ′deep

(x)+b′[q̂]
)

j

=
(

ξW [q+1] f
[q]
θshal

(x)+ξb[q+1]+(xlow−ξxmin)1
)

j

=
(

ξ f̃
[q+1]
θshal

+(xlow−ξxmin)1
)

j
∈ (a,b)

for any x∈Sx. Thus, the layer linearization condition holds.

Finally, by direct calculation, the output preserving condition holds
{

W ′[q+1]diag(λ)W ′[q̂]=W [q+1],

W ′[q+1]diag(λ)b′[q̂]+W ′[q+1]µ+b′[q+1]=b[q+1].

Collecting the above results, we prove that θ′
deep∈TS(θshal), i.e. TS(θshal) is not empty.

Case 2: xmin= xmax.

The layer linearization condition can be easily satisfied because the inputs to each
neuron remain a constant. Therefore, by setting ξ 6=0 to any nonzero constant, the above
construction works for this case, i.e. the constructed θ′

deep∈TS(θshal).

(2) min{mq,mq+1}=mq.

Denote training data by S={(xi,yi)}
n
i=1 and

xmin= min
i∈[n],j∈[mq]

{(

f
[q]
θshal

(xi)
)

j

}

,

xmax= max
i∈[n],j∈[mq]

{(

f
[q]
θshal

(xi)
)

j

}

,

where (f
[q]
θshal

(xi))j is the j-th component of f
[q]
θshal

(xi).

Also, we can transform the input range [xmin,xmax] into the affine subdomain [a,b] of
the activation function σ through an affine transformation. To this end, we also further
discuss in two cases:

24 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

Case 1: xmin 6= xmax.

Let

ξ=
xup−xlow

xmax−xmin
∈R, W ′[q̂]= ξ Id ∈R

mq̂×mq ,

b′[q̂]=(xlow−ξxmin)1∈R
mq̂ .

And then we let

W ′[q+1]=
1

λξ
W [q+1]∈R

mq+1×mq̂ ,

b′[q+1]=b[q+1]−W ′[q+1]diag(λ)b′[q̂]−W ′[q+1]µ∈R
mq+1 .

Finally, we set

θ′
deep=

(

W [1],b[1],··· ,W [q],b[q],W ′[q̂],b′[q̂],W ′[q+1],b′[q+1],··· ,W [L],b[L]
)

.

We can verify that θ′
deep∈TS(θshal) similar to the previous Case 1.

Case 2: xmin = xmax.

By setting ξ 6= 0 to any nonzero constant, the above construction also works for this
case, i.e. the constructed θ′

deep∈TS(θshal).

Therefore, TS(θshal) is non-empty for any θshal, i.e. one-layer lifting exists.

A.2 Output preserving and criticality preserving

Now we prove the following lemma, of which Proposition A.1 is a direct consequence.

Lemma A.2 (Computation of Feature Vectors, Feature Gradients and Error Vectors). Given
data S, consider an NN({ml}

L
l=0) and its one-layer deeper counterpart, NN′({m′

l}, l∈{0,1,2,.. . ,
q,q̂,q+1,.. . ,L}). Let TS denote the one-layer lifting and θshal be any parameter of NN. Then, for

any lifted point θ′
deep∈TS(θshal), the following conditions hold: There exist λ,µ∈R

m′
q̂ such that

for any x∈Sx,

(i) feature vectors in Fθ′deep

f
[l]
θ′deep

(x)= f
[l]
θshal

(x), l∈ [L],

f
[q̂]
θ′deep

(x)=diag(λ)
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ,

(ii) feature gradients in Gθ′deep

g
[l]
θ′deep

(x)= g
[l]
θshal

(x), l∈ [L],

g
[q̂]
θ′deep

(x)=λ,

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 25

(iii) error vectors in Zθ′deep

z
[l]
θ′deep

(x)=z
[l]
θshal

(x), l∈ [q−1]∪[q+1 : L],

z
[q̂]
θ′deep

(x)=
(

W
′ [q+1]

)⊤
(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

,

z
[q]
θ′deep

(x)=
(

W
′ [q̂]

)⊤
(

z
[q̂]
θ′deep

(x)◦λ
)

.

Proof. (i) By the construction of θ′
deep, it is clear that f

[l]
θ′deep

(x)= f
[l]
θshal

(x) for any l∈ [q].

And by the definition of one-layer lifting, layer linearization condition is satisfied, i.e.
for any j ∈ [mq̂], there exists an affine subdomain (aj,bj) associated with λj,µj such that

the j-th component (W ′[q̂] f
[q]
θ′deep

(x)+b′[q̂])j ∈ (aj,bj) for any x ∈ Sx. Therefore, there exist

λ=[λ1,λ2,··· ,λmq̂
]⊤∈R

m′
q̂ ,µ=[µ1,µ2,··· ,µmq̂

]⊤∈R
m′

q̂ such that for any x∈Sx,

f
[q̂]
θ′deep

(x)=σ
(

W
′[q̂] f

[q]
θ′deep

(x)+b
′[q̂]

)

=λ◦
(

W ′[q̂] f
[q]
θ′deep

(x)+b′[q̂]
)

+µ

=λ◦
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ

=diag(λ)
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ.

By the forward propagation process and the output preserving condition of one-layer
lifting, we have

f
[q+1]
θ′deep

(x)=σ
(

W
′ [q+1] f

[q̂]
θ′deep

(x)+b
′[q+1]

)

=σ
(

W ′[q+1]diag(λ)W ′[q̂] f
[q]
θ′deep

(x)+W ′[q+1]diag(λ)b′[q̂]+W ′[q+1]µ+b′[q+1]
)

=σ
(

W [q+1] f
[q]
θshal

(x)+b[q+1]
)

= f
[q+1]
θshal

(x).

And by recursion, we have f
[l]
θ′deep

(x)= f
[l]
θshal

(x) for l∈ [q+1 : L].

(ii) By the continuity of the feature function, we know that for any x∈Sx, there exists
at least a neighborhood of x such that the layer linearization condition holds. Thus, we
have

g
[q̂]
θ′deep

(x)=σ(1)
(

W
′ [q̂] f

[q]
θ′deep

(x)+b
′[q̂]

)

=λ.

And the results for feature gradients g
[l]
θ′deep

(x), l∈[L] can be recursively calculated in a sim-

ilar way.

26 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

(iii) By the backpropagation and the above facts in (i), we have

z
[L]
θ′deep

(x)=∇ℓ

(

f
[L]
θ′deep

(x),y
)

=∇ℓ

(

f
[L]
θshal

(x),y
)

=z
[L]
θshal

(x).

So for l∈ [q+1 : L], it is clear that

z
[l]
θ′deep

(x)=z
[l]
θshal

(x),

z
[q̂]
θ′deep

(x)=
(

W
′ [q+1]

)⊤
(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

.

Use the result in (ii), for l=q,

z
[q]
θ′deep

(x)=
(

W
′[q̂]

)⊤
(

z
[q̂]
θ′deep

(x)◦g
[q̂]
θdeep

(x)
)

=
(

W
′ [q̂]

)⊤
(

z
[q̂]
θ′deep

(x)◦λ
)

.

Since
f
[l]
θ′deep

(x)= f
[l]
θshal

(x), g
[l]
θ′deep

(x)= g
[l]
θshal

(x), l∈ [L],

we have
z
[l]
θ′deep

(x)=z
[l]
θshal

(x), l∈ [q−1].

The proof is complete.

Proposition A.1 (Network Properties Preserving). Given data S, consider an NN({ml}
L
l=0)

and its one-layer deeper counterpart, NN′({m′
l}, l∈{0,1,2,.. . ,q,q̂,q+1,.. .,L}). Let TS denote the

one-layer lifting and θshal be any parameter of NN. Then, for any lifted point θ′
deep ∈TS(θshal),

the following conditions hold:

(i) outputs are preserved fθ′deep
(x)= fθshal

(x) for x∈Sx,

(ii) empirical risk is preserved RS(θ
′
deep)=RS(θshal),

(iii) the network representations are preserved for all layers

span

{

{

(

f
[q̂]
θ′deep

(X)
)

j

}

j∈[m′
q̂]

∪{1}

}

=span

{

{

(

f
[q]
θshal

(X)
)

j

}

j∈[mq]

∪{1}

}

,

and for the other index l∈ [L],

span

{

{

(

f
[l]
θ′deep

(X)
)

j

}

j∈[m′
l]

∪
{

1
}

}

=span

{

{

(

f
[l]
θshal

(X)
)

j

}

j∈[ml]

∪{1}

}

,

where

f
[l]
θ (X)=

[

f
[l]
θ (x1), f

[l]
θ (x2),··· , f

[l]
θ (xn)

]⊤
∈R

n×m′
q̂

and 1∈R
n is the all-ones vector.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 27

Proof. The properties (i) and (ii) are direct consequences of Lemma A.2.

(iii) It is clear that for l∈ [L]

span

{

{

(

f
[q̂]
θ′deep

(X)
)

j

}

j∈[m′
q̂]

∪{1}

}

=span

{

{

(

f
[q]
θshal

(X)
)

j

}

j∈[mq]

∪{1}

}

.

Since for any x∈Sx,

f
[q̂]
θ′deep

(x)=λ◦
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ,

we have

span

{

{

(

f
[q̂]
θ′deep

(X)
)

j

}

j∈[m′
q̂]

∪{1}

}

=span

{

{

(

f
[q]
θshal

(X)
)

j

}

j∈[mq]

∪{1}

}

.

Thus, we finish the proof.

Proposition A.2 (Criticality Preserving). Given data S, consider an NN({ml}
L
l=0) and its

one-layer deeper counterpart, NN′
(

{m′
l}, l∈{0,1,2,.. . ,q,q̂,q+1,.. . ,L}

)

. Let TS denote the one-
layer lifting and θshal be any parameter of NN. If θshal of NN satisfies ∇θRS(θshal) = 0, then
∇θ′RS(θ

′
deep)=0 for any lifted point θ′

deep∈TS(θshal).

Proof. Gradient of loss with respect to network parameters of each layer can be computed
from F, G, and Z as follows:

∇W [l]RS(θ)=∇W [l]ESℓ
(

fθ(x),y
)

=ES

(

(

z
[l]
θ (x)◦g

[l]
θ (x)

)(

f
[l−1]
θ (x)

)⊤
)

,

∇b[l]RS(θ)=∇b[l]ESℓ
(

fθ(x),y
)

=ES

(

z
[l]
θ (x)◦g

[l]
θ (x)

)

.

Then we have for l 6=q, q̂,q+1,

∇W ′[l]RS(θ
′
deep)=∇W [l]RS(θ

′
deep)=∇W [l]RS(θshal)=0,

∇b′[l]RS(θ
′
deep)=∇b[l]RS(θ

′
deep)=∇b[l]RS(θshal)=0.

Also, for l=q+1,

∇W ′[q+1]RS

(

θ′
deep

)

=ES

(

(

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)(

f
[q̂]
θ′deep

(x)
)⊤

)

=ES

(

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)[

σ
(

W ′[q̂] f
[q]
θ′deep

(x)+b′[q̂]
)]⊤

)

=ES

(

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)(

λ◦
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ
)⊤

)

28 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

=ES

(

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)(

diag(λ)
(

W ′[q̂] f
[q]
θshal

(x)+b′[q̂]
)

+µ
)⊤

)

=ES

(

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)(

f
[q]
θshal

(x)
)⊤(

diag(λ)(W ′[q̂]
)⊤

)

+ES

(

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)(

diag(λ)b′[q̂]+µ
)⊤

)

=0,

∇b
′ [q+1]RS

(

θ′
deep

)

=ES

(

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

=ES

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

=0.

For l= q̂,

∇W ′[q̂]RS

(

θ′
deep

)

=ES

(

(

z
[q̂]
θ′deep

(x)◦g
[q̂]
θ′deep

(x)
)(

f
[q]
θ′deep

(x)
)⊤

)

=ES

(

(

diag(λ)z
[q̂]
θ′deep

(x)
)(

f
[q]
θshal

(x)
)⊤

)

=ES

((

diag(λ)
(

W
′[q+1]

)⊤
(

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

)

(

f
[q]
θshal

(x)
)⊤

)

=diag(λ)
(

W
′ [q+1]

)⊤
ES

(

(

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)(

f
[q]
θshal

(x)
)⊤

)

=0,

∇b
′ [q̂]RS

(

θ′
deep

)

=ES

(

z
[q̂]
θ′deep

(x)◦g
[q̂]
θ′deep

(x)
)

=diag(λ)
(

W
′ [q+1]

)⊤
ES

(

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

=diag(λ)
(

W
′ [q+1]

)⊤
ES

(

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

=0.

For l=q,

∇W ′[q]RS

(

θ′
deep

)

=ES

(

(

z
[q]
θ′deep

(x)◦g
[q]
θ′deep

(x)
)(

f
[q−1]
θ′deep

(x)
)⊤

)

=ES

(

(

(W
′ [q̂])⊤

(

z
[q̂]
θ′deep

(x)◦g
[q̂]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)(

f
[q−1]
θ′deep

(x)
)⊤

)

=diag
(

λ
)(

W
′ [q̂]

)⊤
(W

′[q+1])⊤

×ES

(

((

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)(

f
[q−1]
θ′deep

(x)
)⊤

)

=
(

W [q+1]
)⊤

ES

(

((

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)(

f
[q−1]
θ′deep

(x)
)⊤

)

=
(

W [q+1]
)⊤

ES

(

((

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

◦g
[q]
θshal

(x)
)(

f
[q−1]
θshal

(x)
)⊤

)

=ES

(

(

z
[q]
θshal

(x)◦g
[q]
θshal

(x)
)(

f
[q−1]
θshal

(x)
)⊤

)

=0,

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 29

∇b
′ [q]RS(θ

′
deep)=ES

(

z
[q]
θ′deep

(x)◦g
[q]
θ′deep

(x)
)

=ES

(

(W
′ [q̂])⊤

(

z
[q̂]
θ′deep

(x)◦g
[q̂]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)

=diag(λ)
(

W
′[q̂]

)⊤(
W

′[q+1]
)⊤

ES

((

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)

=
(

W [q+1]
)⊤

ES

((

z
[q+1]
θ′deep

(x)◦g
[q+1]
θ′deep

(x)
)

◦g
[q]
θ′deep

(x)
)

=
(

W [q+1]
)⊤

ES

((

z
[q+1]
θshal

(x)◦g
[q+1]
θshal

(x)
)

◦g
[q]
θshal

(x)
)

=ES

(

z
[q]
θshal

(x)◦g
[q]
θshal

(x)
)

=0.

Collecting all the above relations, we obtain that ∇θ′RS(θ
′
deep)=0.

A.3 Embedding principle in depth

Theorem A.1 (Embedding Principle in Depth). Given data S and an NN′({m′
l}

L′

l=0), for any
parameter θc of any shallower NN({ml}

L
l=0) satisfying ∇θRS(θc)=0, there exists parameter θ′

c

in the loss landscape of NN′({m′
l}

L′

l=0) satisfying the following conditions:

(i) fθ′c
(x)= fθc(x) for x∈Sx,

(ii) ∇θ′RS(θ
′

c)=0.

Proof. We prove this theorem by construction using the critical liftings. Let J = L−L′.

The J-layer lifting TS is the J-step composition of one-layer liftings, say TS =T J
S ···T

2
S T

1
S .

From Lemma A.1, we know one-layer lifting always exists, which leads to the existence
of J-layer lifting TS, i.e. TS(θc) 6=∅ for any θc. Now we prove by induction that J-layer
lifting TS satisfies the properties of output preserving and criticality preserving.

For J =1, Propositions A.1 and A.2 show that the one-layer lifting satisfies the prop-
erties of output preserving and criticality preserving.

Assume that the (J−1)-layer lifting satisfies the properties of output preserving and
criticality preserving, we want to show that so does the J-layer lifting.

From the induction hypothesis, we only need to show that if given two critical liftings
T 1

S and T 2
S , then T 2

S T
1

S also satisfies the properties of output preserving and criticality
preserving.

(i) T 2
S T

1
S satisfies the property of output preserving:

Since T 1
S satisfies the property of output preserving, then for any x ∈ Sx and

θ′∈T 1
S (θ), fθ′(x)= fθ(x). Similarly, for T 2

S , we have for any θ′′∈T 2
S T

1
S (θ), fθ

′′ (x)=
fθ′(x), hence fθ′′(x)= fθ(x) for any x∈Sx.

30 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

(ii) T2T1 satisfies the property of criticality preserving:

Since θ is a critical point of RS(θ), for any θ′ ∈ T 1
S (θ),θ

′ is also a critical point of

RS(θ). Similarly, for any θ
′′
∈T 2

S (θ
′),θ′′ is also a critical point of RS(θ), hence for

any θ′′∈T 2
S T

1
S (θ),θ

′′ is also a critical point of RS(θ).

Therefore, for any θ′
c∈TS(θc), conditions (i) and (ii) are satisfied.

A.4 Data dependency

Proposition A.3 (Data Dependency of Lifting). Given data S, S′, consider an NN({ml}
L
l=0)

and its deeper counterpart, NN′({m′
l}

L′

l=0). Let TS and TS′ denote the respective critical liftings
and θshal be any parameter of NN. If data S′⊆S, then TS(θshal)⊆TS′(θshal).

Proof. We first assume TS is a one-layer lifting. If S′ ⊆ S, i.e. dataset S′ is a subset of
dataset S, then we have S′

x ⊆ Sx. For any θ′
deep ∈ TS(θshal), local-in-layer condition is

satisfied regardless of input data. Regarding the data-dependent layer linearization con-
dition, we have that for any j∈ [mq̂], there exists an affine subdomain (aj,bj) associated

with λj,µj such that the j-th component (W ′[q̂] f
[q]
θdeep

(x)+b′[q̂])j ∈ (aj,bj) for any x ∈ Sx,

where W ′[q̂] and b′[q̂] are weight and bias of θ′
deep at layer q̂. Since S′

x ⊆Sx, for any x∈S′
x,

naturally, (W ′[q̂] f
[q]
θdeep

(x)+b′[q̂])j ∈ (aj,bj), i.e. θ′
deep satisfies layer linearization condition

for S′ with the same λ and µ as for S. Therefore, θ′
deep also satisfies the output preserving

condition for S′. Then, we have θdeep∈TS′(θshal), which leads to TS(θshal)⊆TS′(θshal).

If TS is a composition of critical liftings that satisfy this corollary, say TS =T 2
S T

1
S . We

have for any θ′
deep∈TS(θshal), there exists θmid∈T

1
S (θshal) such that θ′

deep∈T
2

S (θmid). Then

θ′
deep ∈T 2

S′(θmid) and θmid ∈T 1
S′(θshal). Therefore, θdeep ∈T 2

S′T 1
S′(θshal)=TS′(θshal), which

leads to TS(θshal)⊆TS′(θshal).

Proposition A.4. Given data S and an NN′({m′
l}

L′

l=0), for any parameter θc of any shallower

NN({ml}
L
l=0), there exists parameter θ′

c in the loss landscape of NN′({m′
l}

L′

l=0) satisfying that:
For any xi ∈ Sx, there exists a neighbourhood N(xi) of xi such that fθ′c

(x) = fθc(x) for
any x∈N(xi).

Proof. We only prove this result for one-layer lifting and similar to Theorem A.1, the
result of multi-layer lifting can be easily obtained by induction. Let TS be any one-layer
lifting and θ′

c∈TS(θc). By the definition of one-layer lifting, layer linearization condition
is satisfied, i.e. for any j∈ [mq̂], there exists an affine subdomain (aj,bj) associated with

λj,µj such that the j-th component (W ′[q̂] f
[q]
θ′c
(xi)+b′[q̂])j ∈ (aj,bj) for any xi ∈Sx. Let

g(x)=W ′[q̂] f
[q]
θ′c
(x)+b′[q̂],

and
ε=min

{

g(xi)j−aj,bi−g(xi)j

}

.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 31

By the continuity of the function g(x), there exists a δ neighborhood Nδ(xi) such that
|g(xi)j−g(x)j|< ε for any x ∈ Nδ(xi), which implies that g(x)j ∈ (aj,bj). Therefore, the
layer linearization condition indeed holds not only for each training input but also at
least a neighbourhood of each training input.

Similar to Lemma A.2, by recursive we can get the NN output function is actually
preserved over a broader area of input space including at least a neighbourhood of each
training input. Hence, if the training dataset is sufficiently large and representative, then
our lifting operator effectively preserves the generalization performance.

Proposition A.5 (Positive and Negative Index of Inertia Preserving). Given data S, consider
an NN({ml}

L
l=0), and its deeper counterpart NN′({m′

l}
L′

l=0). Let TS denote the corresponding

critical lifting and θshal be any parameter of NN. Then, for any critical embedding E :RM→R
M′

resulting from TS, denote θ′
deep := E(θshal), the number of positive and negative eigenvalues of

Hessian matrix HS(θ
′
deep) equals the counterparts of HS(θshal).

Proof. (i) On one hand, because E is a critical embedding, therefore, in the neighbor-
hood of θshal, there exists a full rank matrix A ∈ R

M′×M,c ∈ R
M′

such that E(θshal) =
Aθshal+c. By the output preserving property of E , we have

RS(θshal)≡RS(θdeep)≡RS

(

E(θshal)
)

≡RS(Aθshal+c).

Hence,
∇θ∇θRS(θshal)≡∇θ∇θRS(Aθshal+c).

Then
HS(θshal)≡A⊤HS(Aθshal+c)A.

Given any θshal, if HS(θshal) has k1 negative eigenvalues {λ
neg
j }k1

j=1 with associated or-

thonormal eigenvectors {e
neg
j }k1

j=1, then {Ae
neg
j }k1

j=1 satisfies, for any e
neg
j ,

(

Ae
neg
j

)⊤
HS(Aθshal+c)Ae

neg
j =

(

e
neg
j

)⊤
HS(θshal)e

neg
j =λ

neg
j <0.

By full rankness of A, we have

dim

(

span

(

{

Ae
neg
j

}k1

j=1

))

= k1.

Thus, HS(θdeep)=HS(Aθshal+c) has at least k1 negative eigenvalues.

(ii) On the other hand, for any lifted point θdeep, by the definition of critical lifting, there
exists a neighborhood of θdeep such that the layer linearization condition holds. There-
fore, in the neighborhood of θdeep, there exists a natural output-preserving projection op-

erator P and a full rank matrix B∈R
M×M′

,d∈R
M such that θshal :=P(θdeep)=Bθdeep+d.

By the output preserving property of P , we have

RS(θdeep)≡RS(θshal)≡RS

(

P(θdeep)
)

≡RS(Bθdeep+d).

32 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

Hence,

∇θ∇θRS(θdeep)≡∇θ∇θRS(Bθdeep+d).

Then

HS(θdeep)≡A⊤HS(Bθdeep+d)B.

Given any θdeep, if HS(θdeep) has k2 negative eigenvalues {λ
neg
j }k2

j=1 with associated or-

thonormal eigenvectors {e
neg
j }k2

j=1, then {Be
neg
j }k2

j=1 satisfies, for any e
neg
j ,

(

Be
neg
j

)⊤
HS(Bθdeep+c)Be

neg
j =

(

e
neg
j

)⊤
HS(θdeep)e

neg
j =λ

neg
j <0.

By full rankness of B, we have

dim

(

span

(

{

Be
neg
j

}k2

j=1

))

= k2.

Thus, HS(θshal)=HS(Bθdeep+d) has at least k2 negative eigenvalues.

Combining (i) and (ii), we have proved the number of negative eigenvalues of Hes-
sian matrix HS(θ

′
deep) equals the counterparts of HS(θshal). Similarly, we can prove this

result for the number of positive eigenvalues.

Corollary A.1 (Incremental Degeneracy of Critical Point Through Lifting). Given data S,
consider an NN({ml}

L
l=0), and its deeper counterpart NN′({m′

l}
L′

l=0). Let TS denote the cor-
responding critical lifting and θshal ∈ R

M be a critical point of NN. Then, any lifted point
θ′

deep∈TS(θshal)⊆R
M′

possesses M′−M additional degrees of degeneracy in comparison to θshal.

Proof. Given that deeper networks have more parameters, it follows from Proposition A.5
that the lifted critical point θdeep exhibits M′−M extra degrees of degeneracy compared
to θshal.

A.5 One-layer residual lifting

We give the rigorous definition of one-layer residual lifting, which is very similar to one-
layer lifting. The only difference is that there is one more item in the output preserving
condition due to the skip connection (see Fig. 9 for illustration).

Definition A.2 (One-Layer Residual Lifting). Given data S, consider an NN({ml}
L
l=0) and

its one-layer deeper residual counterpart, NN′({m′
l}, l ∈{0,1,2,.. . ,q,q̂,q+1,.. .,L}

)

, which has
a skip connection at the q̂-th layer. The one-layer residual lifting, denoted as TS, is a function that
transforms any parameter θ=(W [1],b[1],··· ,W [L],b[L]) of NN into a set M within the parameter
space of NN′. Formally, M (where M :=TS(θ)) represents a collection of all possible parameters
θ′ of NN′ that satisfying the following three conditions:

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 33

Figure 9: Illustration of one-layer residual lifting. The pink layer is inserted into the left network to get the

right network. The input parameters W ′[q̂] and output parameters W ′[q+1] of the inserted layer are obtained by

factorizing the input parameters W [q+1] of (q+1)-th layer in the left network to satisfy layer linearization and
output preserving conditions.

(i) Local-in-layer condition: Weights of each layer in NN′ are inherited from NN except for
layer q̂ and q+1, i.e.











θ′|l =θ|l for l∈ [q]∪[q+2 : L],

θ′|q̂ =(W ′[q̂],b′[q̂])∈R
m′

q̂×m′
q−1×R

m′
q̂ ,

θ′|q+1=(W ′[q+1],b′[q+1])∈R
m′

q+1×m′
q̂×R

m′
q+1.

(ii) Layer linearization condition: For any j∈ [mq̂], there exists an affine subdomain (aj,bj) of σ

associated with λj,µj such that the j-th component (W ′[q̂] f
[q]
θ′ (x)+b′[q̂])j ∈ (aj,bj) for any

x∈Sx.

(iii) Output preserving condition

{

W ′[q+1]diag(λ)W ′[q̂]+W ′[q+1]=W [q+1],

W ′[q+1]diag(λ)b′[q̂]+W ′[q+1]µ+b′[q+1]=b[q+1],

where λ=[λ1,λ2,··· ,λmq̂
]⊤∈R

m′
q̂ ,µ=[µ1,µ2,··· ,µmq̂

]⊤∈R
m′

q̂ , and diag(λ) denotes the
diagonal matrix formed by vector λ.

As with one-layer lifting, the properties of output preserving and criticality preserv-
ing as well as data-dependency are the same for one-layer residual lifting.

A.6 Centered kernel alignment

Consider X ∈R
n×m1 and Y ∈R

n×m2 , which represent two layers each containing m1 and
m2 neurons respectively, mapped to the identical set of n instances. The Gram matrices,
K = XX⊤ and L=YY⊤, are n×n in dimension and each of their elements signifies the
similarity between two instances based on the representations in X or Y .

34 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

The centering matrix is given by H = In−11⊤/n. Consequently, the matrices K′ =
HKH and L′ = HLH correspond to similarity matrices where column and row means
have been subtracted.

The Hilbert-Schmidt independence criterion (HSIC) quantifies the similarity of these
centered similarity matrices by converting them into vectors and computing the dot
product between these vectors, HSIC0(K,L)= vec(K′)·vec(L′)/(n−1)2. HSIC remains
invariant under orthogonal transformations of the representations and, consequently,
under permutation of neurons, but lacks invariance to scaling of the original representa-
tions.

Centered kernel alignment (CKA) is used to further normalize HSIC to yield a simi-
larity metric in the range of 0 to 1 that remains invariant to isotropic scaling

CKA(K,L)=
HSIC0(K,L)

√

HSIC0(K,K)HSIC0(L,L)
.

The research by [15] demonstrated that linear CKA is a reliable measure for identi-
fying architecturally corresponding layers when measured between layers of architec-
turally identical networks that were trained from distinct random initializations. Indeed,
linear CKA reflects the degree of linear correlation between representations across layers.

Proposition A.6 (CKA and Layer Linearization). Let X ∈ R
n×m1 and Y ∈ R

n×m2 contain
representations of two layers, one with m1 neurons and another m2 neurons, to the same set of n
examples. If the linear CKA between the two layers equals 1, then there exists W ∈ R

m1×m2 ,
b∈R

1×m2 such that
Y =XW+b.

Proof. Denote X ′ = HX ,Y ′ = HY , where H = In−11⊤/n. Then K′ = X ′X ′⊤, L′ = Y ′Y ′⊤.
Notice that

〈

vec(X ′X ′T),vec(Y ′Y ′T)
〉

= tr(X ′X ′TY ′Y ′T)= tr(X ′TY ′Y ′TX ′)=‖Y ′TX ′‖2
F.

Linear CKA is equivalent to the cosine similarity

CKA(XXT,YYT)=
‖Y ′TX ′‖2

F

‖X ′TX ′‖F‖Y ′TY ′‖F

=
〈vec(X ′X ′T),vec(Y ′Y ′T)〉

√

〈vec(X ′X ′T),vec(X ′X ′T)〉
√

〈vec(Y ′Y ′T),vec(Y ′Y ′T)〉
.

If CKA(XXT,YYT)=1, then there exists α≥0 such that

Y ′Y ′⊤=αX ′X ′⊤.

From this, we can conclude X ′ and Y ′ share the same column space. Therefore, there
exists a matrix W∈R

m1×m2 such that Y ′=X ′W . As X ′=X−11TX/n and Y ′=Y−11TY/n,
we can write Y ′=X ′W as

Y−
1

n
11TY =XW−

1

n
11TXW .

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 35

Denote

b=
1

n
1⊤(Y−XW)∈R

1×m2 ,

then we have
Y =XW+b,

which completes the proof.

Appendix B. Supplementary experiments

In this section, we present the supplementary experiments mentioned in the main text.

Dependence of layer linearization on initialization scale and training data size. The
layer linearization of a network is influenced by its initialization scale and the size of the
training data. When initialized with a small enough scale, the network is likely to oper-
ate in the linear region during the early stages of training, leads to often encounter the
lifted critical point. To investigate the impact of initialization scale on layer linearization,
we train a 10-layer network with different initializations on the Fashion-MNIST dataset
and measure the extent of linearization of each hidden layer post-training. As depicted
in Fig. 12(a), with increasing initialization scale from left to right, the degree of non-
linearity within each hidden layer also rises. Additionally, as shown in Fig. 12(b), for
a fixed initialization scale, the degree of nonlinearity across the network’s hidden layers
increases as the size of the training dataset expands from 500 to 5,000 to 50,000. This
finding suggest that larger dataset adds to the difficulty of layer linearization and poten-
tially facilitate a reduction in critical manifolds, thereby enhancing optimization. This is
further corroborated by our experiment on simpler datasets, as depicted in Fig. 7 in the
main text.

Appendix C. Details of experiments

For the experiment of Iris dataset (Figs. 1(a) and 1(b)), we use ReLU as the activation
function and the mean square error (MSE) as the loss function. We use full-batch gradi-
ent descent with learning rate 0.001 to train NNs for 100000 epochs. The width is 50 for
each hidden layer. The initial distribution of all parameters follows a Gaussian distribu-
tion with a mean of 0 and a variance of 0.07. For the MNIST dataset shown in Figs. 1(c)
and 1(d), we randomly select 500 images to constitute the training set, employing full
batch gradient training, with MSE serving as the loss function. Remark that, the phe-
nomenon in Fig. 1 are similar for different activation functions.

For the 1-D experiments in Figs. 3, 6, 7, and 11, we use tanh as the activation function
and MSE as the loss function. We use full-batch gradient descent with learning rate 0.01
to train NNs with width 50 for each hidden layer. The initial distribution of all parameters
follows a Gaussian distribution with a mean of 0 and a variance of 0.01.

36 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

For the experiment of MNIST classification (Fig. 8), we use tanh as the activation
function and the cross-entropy as the loss function. We use stochastic gradient descent
with batch size 1000 and learning rate 0.001 to train NNs for 100 epochs. The width is
50 for each hidden layer. The initial distribution of all parameters follows a Gaussian
distribution with a mean of 0 and a variance of 0.05.

For the experiment of Fashion-MNIST classification (Fig. 12), we use tanh as the ac-
tivation function and the cross-entropy as the loss function. We use stochastic gradient
descent with batch size 512 and learning rate 0.01 to train NNs for 50 epochs. The width
is 100 for each hidden layer.

For the 1-D experiments in Fig. 10, we use ReLU as the activation function and MSE as
the loss function. We use full-batch gradient descent with learning rate 0.001 to train NNs
with width 50 for each hidden layer. The initial distribution of all parameters follows
a Gaussian distribution with a mean of 0 and a variance of 0.005.

0 5000 10000 15000

����

10 1

100

101

�
�
�
�

����

(a) Training loss

0 5 10

x

5

0

5

y

O�����

(b) Output corresponding to the second dotted line in (a)

0 5 10

�

5

0

5

y

������

(c) Output corresponding to the third dotted line in (a) (d) Evolution of MPC

Figure 10: Deep ReLU neural networks encounter lifted critical points during training. (a) The training loss
trajectory for ReLU NN of different depths with 50 neurons in each hidden layer on training data in (b). (b, c)
The output functions of NNs with different depths at the same loss values indicated by (b) the second horizontal
dotted line or (c) the third horizontal dotted line in (a). (d) The extent of layer linearization for all hidden layers
during the training process of three-hidden-layer NN.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 37

0 150000 300000

 !"#$

10 2

10 1

100

L
o
s
s

share the
same plateau

(a) Training loss

10 0 10

%

2

0

2

y

(b) Output corresponding to the red span in (a)

10 0 10

&

2

0

2

y

(c) Output corresponding to the blue span in (a) (d) Evolution of MPC

Figure 11: Deep residual-connected neural networks encounter lifted critical points during training. (a) The
training loss for NNs of different depths with 50 neurons in each hidden layer for training data in (b). (b, c)
The output functions of NNs with different depths at the same loss values indicated by (b) the first horizontal
dotted line or (c) the second horizontal dotted line. (d) The extent of layer linearization for all hidden layers
during the training process of three-hidden-layer residual NN.

(a) Initialization scale (b) Training data size

Figure 12: Dependence of layer linearization on initialization scale and training data size. (a) The extent of layer
linearization across all hidden layers corresponding to initialization scales drawn from a Gaussian distribution
with a mean of 0 and standard deviations of 0.003, and 0.005, 0.02, arranged from left to right. (b) The extent
of layer linearization across all hidden layers in relation to training data sizes of 500, 5,000, and 50,000, arranged
from left to right.

38 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

For the experiments in Fig. 5, we employ a comprehensive methodology to ascertain
the eigenvalues of the Hessian matrix at empirical critical points, comprising the follow-
ing steps:

(1) Initially, we approximate the probable interval of critical points by observing regions
where the loss diminishes very slowly. We then choose the point with the least pa-
rameter derivative (using the L1 norm) as our empirical critical point. At this empir-
ical critical point, the L1 norm of the derivative of the loss function hovers around
10−4, which is acceptably small.

(2) To accurately determine the eigenvalues of a Hessian matrix with a large condition
number, we perform 100 random orthogonal similarity transformations on the ma-
trix. We derive a more reliable set of eigenvalues by averaging the outcomes from
these 100 trials.

(3) For a clearer distinction between significant and non-significant eigenvalues, we
identify locations where there are evident gaps in eigenvalue magnitudes to differ-
entiate between zero and non-zero eigenvalues.

(4) To further ensure that the empirical degeneracy is valid, we meticulously examined
the state of each neuron and the effective rank of the Hessian matrix. For instance,
in Fig. 5(a), for the ReLU network with a single hidden layer containing only two
neurons, one of the neurons remains inactive throughout the training dataset. Con-
sequently, the eigendirections associated with its parameters should be null. We ob-
served that the effective rank of the Hessian matrix is 3, implying that there indeed
are three non-zero eigenvalues. This aligns with the number of non-zero eigenvalues
suggested by the evident gaps identified in step (3).

For activation functions with strong nonlinearity near zero (e.g. ReLU), we first re-
moves those “zero-neurons” whose input and output weights are reasonably small to
avoid their interference to the measure of layer linearization.

Remark that, although Figs. 1, 3 and 4 are case studies each based on a random trial,
similar phenomenon can be easily observed as long as the initialization variance is prop-
erly small, i.e. far away from the linear/kernel/NTK regime.

Acknowledgments

This work is sponsored by the National Key R&D Program of China (Grant No.
2022YFA1008200) (T. Luo, Z. Xu and Y. Zhang), by the National Natural Science Foun-
dation of China (Grant Nos. 92270001 (Z. Xu), 12101402 (Y. Zhang), 12371511 (Z. Xu),
12101401 (T. Luo)), by the Shanghai Municipal Science and Technology (Key Project No.
22JC1401500 (T. Luo)), by the Shanghai Municipal of Science and Technology (Grant
No. 20JC1419500 (Y. Zhang)), by the Lingang Laboratory (Grant No. LG-QS-202202-08
(Y. Zhang)), by the Shanghai Municipal of Science and Technology (Major Project No.

Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40 39

2021SHZDZX0102), by the HPC of School of Mathematical Sciences and the Student
Innovation Center, and the Siyuan-1 cluster supported by the Center for High Perfor-
mance Computing at Shanghai Jiao Tong University, Key Laboratory of Marine Intelli-
gent Equipment and System, Ministry of Education, P.R. China.

References

[1] S. Arora, N. Cohen, and E. Hazan, On the optimization of deep networks: Implicit acceleration
by overparameterization, in: Proceedings of the 35th International Conference on Machine
Learning, PMLR, 80:244–253, 2018.

[2] Z. Cai, J. Chen, M. Liu, and X. Liu, Deep least-squares methods: An unsupervised learning-based
numerical method for solving elliptic PDEs, J. Comput. Phys., 420:109707, 2020.

[3] P. Cheridito, A. Jentzen, and F. Rossmannek, Landscape analysis for shallow neural networks:
Complete classification of critical points for affine target functions, arXiv:2103.10922, 2021.

[4] R. Collobert and J. Weston, A unified architecture for natural language processing: Deep neu-
ral networks with multitask learning, in: Proceedings of the 25th International Conference on
Machine learning, ACM, 160–167, 2008.

[5] S. Du and J. Lee, On the power of over-parametrization in neural networks with quadratic acti-
vation, in: Proceedings of the 35th International Conference on Machine Learning, PMLR,
80:1329–1338, 2018.

[6] W. E and Q. Wang, Exponential convergence of the deep neural network approximationfor analytic
functions, Sci. China Math., 61:1733–1740, 2018.

[7] R. Eldan and O. Shamir, The power of depth for feedforward neural networks, in: 29th Annual
Conference on Learning Theory, PMLR, Vol. 49, 907–940, 2016.

[8] K. Fukumizu and S.-i. Amari, Local minima and plateaus in hierarchical structures of multilayer
perceptrons, Neural Netw., 13(3):317–327, 2000.

[9] K. Fukumizu, S. Yamaguchi, Y.-i. Mototake, and M. Tanaka, Semi-flat minima and saddle points
by embedding neural networks to overparameterization, in: Advances in Neural Information Pro-
cessing Systems, Vol. 32, 13868–13876, 2019.

[10] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep
learning, Proc. Natl. Acad. Sci. USA, 115(34):8505–8510, 2018.

[11] H. He, G. Huang, and Y. Yuan, Asymmetric valleys: Beyond sharp and flat local minima, arXiv:
1902.00744, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.

[13] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing in-
ternal covariate shift, in: Proceedings of the 32nd International Conference on Machine Learn-
ing, PMLR, 37:448–456, 2015.

[14] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyanskiy, On large-batch
training for deep learning: Generalization gap and sharp minima, in: 5th International Conference
on Learning Representations, ICLR, 2017.

[15] S. R. Kudugunta, A. Bapna, I. Caswell, N. Arivazhagan, and O. Firat, Investigating multilin-
gual MNT representations at scale, in: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 1565–1575, 2019.

40 Z. Bai, T. Luo, Z. Xu and Y. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-40

[16] T. Nguyen, M. Raghu, and S. Kornblith, Do wide and deep networks learn the same things?
Uncovering how neural network representations vary with width and depth, in: International Con-
ference on Learning Representations, 2021.

[17] N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F. A. Hamprecht, Y. Bengio, and
A. Courville, On the spectral bias of deep neural networks, in: Proceedings of the 36th Inter-
national Conference on Machine Learning, PMLR, 97:5301–5310, 2019.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, XNOR-Net: Imagenet classification using
binary convolutional neural networks, in: Proceedings of the 14th European Conference on
Computer Vision, Springer, 525–542, 2016.

[19] L. Sagun, L. Bottou, and Y. LeCun, Eigenvalues of the Hessian in deep learning: Singularity and
beyond, arXiv:1611.07476, 2016.

[20] B. Simsek, F. Ged, A. Jacot, F. Spadaro, C. Hongler, W. Gerstner, and J. Brea, Geometry of the
loss landscape in overparameterized neural networks: Symmetries and invariances, in: Proceedings
of the 38th International Conference on Machine Learning, PMLR, 139:9722–9732, 2021.

[21] I. Skorokhodov and M. Burtsev, Loss landscape sightseeing with multi-point optimization, arXiv:
1910.03867, 2019.

[22] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, Theoretical insights into the optimization land-
scape of over-parameterized shallow neural networks, IEEE Trans. Inf. Theory, 65(2):742–769,
2019.

[23] M. Telgarsky, Benefits of depth in neural networks, in: 29th Annual Conference on Learning
Theory, PMLR, 49:1517–1539, 2016.

[24] Z. Wang and Z. Zhang, A mesh-free method for interface problems using the deep learning approach,
J. Comput. Phys., 400:108963, 2020.

[25] L. Wu, Z. Zhu, and W. E, Towards understanding generalization of deep learning: Perspective of
loss landscapes, arXiv:1706.10239, 2017.

[26] Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, Frequency principle: Fourier analysis sheds
light on deep neural networks, Commun. Comput. Phys., 28(5):1746–1767, 2020.

[27] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, Training behavior of deep neural network in frequency domain,
in: International Conference on Neural Information Processing, 264–274, 2019.

[28] Z.-Q. J. Xu and H. Zhou, Deep frequency principle towards understanding why deeper learning is
faster, in: Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10541–10550,
2021.

[29] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires
rethinking generalization, in: 5th International Conference on Learning Representations, ICLR
2017, 2017.

[30] Y. Zhang, Y. Li, Z. Zhang, T. Luo, and Z. J. Xu, Embedding principle: A hierarchical structure of
loss landscape of deep neural networks, J. Mach. Learn., 1:60–113, 2022.

[31] Y. Zhang, T. Luo, Z. Ma, and Z.-Q. J. Xu, A linear frequency principle model to understand the
absence of overfitting in neural networks, Chinese Phys. Lett., 38:038701, 2021.

[32] Y. Zhang, Z. Zhang, T. Luo, and Z. J. Xu, Embedding principle of loss landscape of deep neural
networks, in: Advances in Neural Information Processing Systems, 34:14848–14859, 2021.

