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1 Introduction

It is well-known that, given any domain Ω⊂Rd,d≥ 2, and any non-empty rel-
atively open subset Γ0 of the boundary of Ω, there exist constants C1 = C1(Ω),
C2=C2(Ω,Γ0),C3=C3(Ω) and C4=C4(Ω) such that

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤C1‖∇su‖L2(Ω), ∀u∈H1(Ω;Rd), (1.1)

‖u‖H1(Ω)≤C2‖∇su‖L2(Ω), ∀u∈H1
Γ0
(Ω;Rd), (1.2)

‖u‖H1(Ω)≤C3‖∇su‖L2(Ω)+C4‖u‖L2(Ω), ∀u∈H1(Ω;Rd). (1.3)
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Inequalities (1.2) and (1.3) constitute respectively the first and second Korn in-
equalities, according to most textbooks, especially in the theory of elasticity. Var-
ious proofs have been given to these inequalities, see, e.g. Duvaut and Lions [6],
Fichera [7], Friedrichs [8], Gobert [9], Hlaváček [10], Hlaváček and Nečas [11],
Miyoshi [16], Mosolov and Myasnikov [17], Nitsche [18], Temam [19].

The dependence of these constants on the domain Ω, and on Γ0 for the second
constant, is however not well known, save for an upper bound of order of (r/R)d

for domains Ω contained in a ball with radius R and star-shaped with respect to
a ball of radius r, and for some sharper upper bounds for particular domains Ω,
see, e.g. Horgan [12, 13], Kondratev and Oleinik [14], Ciarlet et al. [5]. These
sharper bounds are often needed in solid and fluid mechanics in domains de-
pending on a small parameter, where the magnitude of Korn’s constant with re-
spect to this parameter is essential in justifying dimensionally reduced models by
convergence theorems when the parameter goes to zero or to infinity.

The objective of this paper is to give new proofs to the three Korn inequalities
mentioned above, based on a new approach that has the advantage of yielding
constants that depend explicitly on several parameters associated with the do-
main Ω. More specifically, this new approach yields constants C1,. . .,C4 that de-
pend explicitly on (an upper bound K(Ω) of) the norm of a linear and continuous
inverse to the divergence operator in the domain Ω (see Lemma 3.1), beside the
constants appearing in Poincaré’s, Poincaré-Wirtinger’s, and trace, inequalities in
Sobolev spaces.

The paper is organised as follows. Section 2 specifies the notation and defini-
tions used in all ensuing sections. Section 3 estimates the constant C1 appearing in
Korn’s inequality (1.1). The key result is the first inequality of Theorem 3.1, which
provides a first estimate of the constant C1 (see Corollary 3.1). Then the results
of Theorem 3.1 and Corollary 3.1 are generalized, and improved, in Theorem 3.2.
Section 4 estimates the constant C2 appearing in Korn’s inequality (1.2). The main
result is Theorem 4.1, which is proved by combining Theorem 3.1 with Poincaré’s
inequality, trace inequality, and an inequality about the eigenvalues of symmet-
ric matrices (Lemma 4.1). Section 5 estimates the constants C3 and C4 appearing
in Korn’s inequality (1.3). The main result is Theorem 5.3, which generalizes the
previous Theorem 5.2 (at the expense of considerably more difficult and at places
technical proof), itself a simpler generalization of Theorem 5.1. The proofs of all
three theorems rely on the inequalities established in Theorem 3.2, combined with
a method based on Fubini’s theorem to estimate the norm of the anti-symmetric
matrix appearing in these inequalities. Finally, Section 6 summarises all the esti-
mates obtained in this paper for the constants C1,C2,C3 and C4, with all the details
necessary to apply them in future works without having to read the entire paper.
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2 Main definitions and notation

The Euclidean norm in Rd, the Frobenius norm in Rm×n, the d-dimensional Lebe-
sgue measure, and the (d−1)-dimensional Haussdorff measure, all are denoted
by |·|. In particular, if Ω is a domain in Rd and Γ0 is a relatively open subset of its
boundary, then

|Ω|=
∫

Ω
dx, |Γ0|=

∫

Γ0

dσ.

A domain in Rd is by definition a bounded and connected open subset Ω⊂Rd

with a Lipschitz-continuous boundary Γ := ∂Ω in the sense of Adams [1], the
set Ω being then locally on only one side of Γ. A generic point in Rd is denoted
x=(x1,x2,. . .,xd). Partial derivative operators, in the classical or weak sense, with
respect to the coordinates xj are denoted by ∂j :=∂/∂xj.

Boldface letters denote vectors, matrices, vector fields and matrix fields to
distinguish them from scalars and real-valued functions.

The space of all real square matrices of order n, n= 1,2,.. ., are denoted Mn.
Then

M
n=S

n⊗A
n,

where
S

n :={S∈M
n; ST =S}, A

n :={A∈M
n; AT =−A}

respectively denote the space of all real symmetric matrices of order n and the
space of all real anti-symmetric matrices of order n.

Given any sufficiently smooth field u=(ui) : Ω⊂Rd →Rd, its gradient is the
matrix field

∇u=(∂jui) : Ω→M
d,

where the index of the derivative ( j is this case) is the column index. Then

∇u=∇su+∇au in Ω,

where

∇su=
(
eij(u)

)
:=

1

2

(
∇u+(∇u)T

)
,

∇au=
(
aij(u)

)
:=

1

2

(
∇u−(∇u)T

)

respectively denote the symmetric and anti-symmetric parts of ∇u. Note that the
components of these matrix fields satisfy

∂jui = eij(u)+aij(u),
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where

eij(u)=
1

2
(∂jui+∂iuj), aij(u)=

1

2
(∂jui−∂iuj).

Given any domain Ω⊂Rd, any 1≤p≤+∞, and any integer n≥1, the notation
Lp(Ω;Rn) denotes the spaces of all (equivalence classes modulo the equality a.e.
(almost everywhere)) vector fields u = (ui) : Ω →R

n with components ui is the
usual Lebesgue space Lp(Ω). The space Lp(Ω;Rn) is equipped with the norm
denoted and defined by

‖u‖Lp(Ω) :=‖|u|‖Lp(Ω),

where |u| :=(∑n
i=1 |ui|p)1/p. Since Ω is a domain, so in particular bounded by the

above definition, the subspace

L2
0(Ω) :=

{
v∈L2(Ω);

∫

Ω
v(x)dx=0

}
⊂L2(Ω),

and the average

−
∫

Ω
f :=

1

|Ω|
∫

Ω
f (x)dx∈R

of functions f ∈L2(Ω) are well defined.
Given any domain Ω ⊂ Rd, the notation H1(Ω) denotes the usual Sobolev

space of functions f ∈ L2(Ω) that possess (weak) first order partial derivatives
in L2(Ω). The notation H1(Ω;Rn) denotes the spaces of all (equivalence classes
modulo the equality a.e.) vector fields u = (ui) : Ω →R

n with components ui ∈
H1(Ω), equipped with the norm denoted and defined by

‖u‖H1(Ω) :=
(
‖u‖2

L2(Ω)+‖∇u‖2
L2(Ω)

)1/2
.

Given any relatively open subset Γ0⊂Γ of the boundary Γ :=∂Ω,

H1
Γ0
(Ω) :=

{
v∈H1(Ω); v|Γ0

=0
}

denotes the kernel of the trace operator v∈ H1(Ω)→ v|Γ0
∈ L2(Γ0). If Γ0 =Γ, we

use the shorter notation
H1

0(Ω) :=H1
Γ(Ω),

and we denote by H−1(Ω) the dual space of H1
0(Ω) equipped with the norm

(remember that Ω is bounded, so Poincaré inequality holds in H1
0(Ω))

‖v‖H1
0 (Ω) :=‖∇v‖L2(Ω)
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for all v∈H1
0(Ω). Thus,

‖ f‖H−1(Ω) := sup
v∈H1

0 (Ω),‖v‖
H1

0(Ω)
≤1

|≪ f ,v≫|,

where ≪ f ,v≫:= f (v), so that

|≪ f ,v≫|≤‖ f‖H−1(Ω)‖∇v‖L2(Ω)

for all f ∈ H−1(Ω) and all v ∈ H1
0(Ω). Finally, we recall that a vector field r ∈

H1(Ω;Rd) such that ∇sr = 0 in L2(Ω;Sd) is called an infinitesimal rigid vector
field of Ω, and that the set of all infinitesimal rigid vector fields, which is denoted
and defined by

Rig(Ω) :=
{

r∈H1(Ω;Rd);∇sr=0 in L2(Ω;Sd)
}

,

satisfies

Rig(Ω)=
{

r : Ω→R
d; there exist a∈R

d and B∈A
d

such that r(x)=a+Bx for all x∈R
d
}

.

Note that the space Rig(Ω) is finite-dimensional, so the infimum in Korn’s in-
equality (1.1) is attained.

3 Korn’s inequalities for fields in H1(Ω;Rn)/Rig(Ω)

The definition of a domain Ω⊆Rd is given in the previous section.
The main objective of this section is to establish the first Korn inequality men-

tioned in the introduction, together with an estimate of the constant C1 in terms
of the constant K appearing in Lemma 3.1 below about the divergence equation.
Since the space Rig(Ω) is finite dimensional, this inequality can be recast as fol-
lows: Given any domain Ω ⊂ Rd, there exists a constant C1 = C1(Ω) with the
following property: For every u ∈ H1(Ω;Rd), there exists an infinitesimal rigid
vector field r(u)∈Rig(Ω) such that

‖u−r(u)‖H1(Ω)≤C1‖∇su‖L2(Ω). (3.1)

We will establish explicit estimates for both the constant C1 and the rigid vector
field r(u) in the above inequality.
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The starting point of these estimates is the following well-known result about
the surjectivity of the divergence operator. The constant K=K(Ω) appearing in
this result will play a fundamental role in this paper, as all Korn constants in this
paper depend on it.

Lemma 3.1 (Divergence Equation). Given any domain Ω⊂Rd, there exists a constant

K =K(Ω) with the following property: For every f ∈ L2
0(Ω), there exists a vector field

v=v( f )∈H1
0 (Ω;Rd) such that

divv= f in Ω, ‖∇v‖L2(Ω)≤K‖ f‖L2(Ω).

Proof. See, e.g. Bogovskii [2], Borchers and Sohr [3], or Ciarlet [4].

The next theorem show how Korn’s inequalities can be deduced from Lem-
ma 3.1 with a constant of the same order.

Theorem 3.1. Given any domain Ω in Rd, let K=K(Ω) denote the constant appearing

in Lemma 3.1. Then, for all vector fields u∈H1(Ω;Rd),
∥∥∥∥∇au−−

∫

Ω
∇au(x)dx

∥∥∥∥
L2(Ω)

≤2K
√

d‖∇su‖L2(Ω),

∥∥∥∥∇u−−
∫

Ω
∇au(x)dx

∥∥∥∥
L2(Ω)

≤ (1+2K
√

d)‖∇su‖L2(Ω).

Proof. Let u∈H1(Ω,Rd) and B :=−
∫

Ω
∇au(x)dx. Since ∇u=∇su+∇au, it suffices

to prove that

‖∇au−B‖L2(Ω)≤2K
√

d‖∇su‖L2(Ω).

Since all the components of the matrix field (∇au−B) belong to the space L2
0(Ω),

Lemma 3.1 shows that, for every i, j = 1,.. .,d, there exists a vector field vij =

(vk
ij)

d
k=1∈H1

0(Ω;Rd) such that

divvij=(∇au−B)ij in Ω,

‖∇avij‖L2(Ω)≤K‖(∇au−B)ij‖L2(Ω).

Consequently,

‖∇au−B‖2
L2(Ω)=∑

i,j

∫

Ω
(∇au−B)ij(divvij)dx

=−∑
i,j,k

≪∂k(∇au)ij,v
k
ij≫



C. Mardare and T. H. Nguyen / Commun. Math. Anal. Appl., x (2024), pp. 1-39 7

so that, on the one hand,

‖∇au−B‖2
L2(Ω)≤∑

i,j,k

‖∂kaij‖H−1(Ω)

∥∥∇vk
ij

∥∥
L2(Ω)

≤K∑
i,j

‖∇aij‖H−1(Ω)‖(∇au−B)ij‖L2(Ω)

≤K

(
∑
i,j

‖∇aij‖2
H−1(Ω)

)1/2

‖∇au−B‖L2(Ω),

where aij := (∇au)ij denote the components of the antisymmetric matrix field

∇au. Note that the first inequality above is deduced by using the definition

of H−1(Ω) as the dual space of the space H1
0(Ω) equipped with the norm f ∈

H1
0(Ω)→‖∇ f‖L2(Ω).

Let eij := (∇su)ij denote the components of the symmetric matrix field ∇su.

Then, for each i, j,k∈{1,2,.. . ,d},

‖∂iekj‖H−1(Ω)= sup
v∈H1

0(Ω),‖∇v‖
L2(Ω)

≤1

∣∣∣∣
∫

Ω
ekj∂iv dx

∣∣∣∣≤‖ekj‖L2(Ω).

Since

∂kaij=∂iekj−∂jeki in H−1(Ω)

(as is deduced immediately from the definition of the functions aij and eij), we

deduce that, on the other hand,

∑
i,j

‖∇aij‖2
H−1(Ω)=∑

i,j,k

‖∂kaij‖2
H−1(Ω)

≤∑
i,j,k

(
‖∂iekj‖H−1(Ω)+‖∂jeki‖H−1(Ω)

)2

≤2∑
i,j,k

(
‖ekj‖2

L2(Ω)+‖eki‖2
L2(Ω)

)

=4d‖∇su‖2
L2(Ω).

Then we infer from the above inequalities that

‖∇au−B‖L2(Ω)≤K

(
∑
i,j

‖∇aij‖2
H−1(Ω)

)1/2

≤2K
√

d‖∇su‖L2(Ω).

This completes the proof of the theorem.
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In the proof of the next Korn inequality we will need Poincaré-Wirtinger’s
inequality, stated below (without proof) for clarity.

Lemma 3.2 (Poincaré-Wirtinger). Given any domain Ω⊂Rd, there exists a constant

W(Ω) such that, for all v∈H1(Ω;Rd),
∥∥∥∥v−−

∫

Ω
v(x)dx

∥∥∥∥
L2(Ω)

≤W(Ω)‖∇v‖L2(Ω).

We are now in a position to estimate the constant C1 appearing in Korn’s in-
equality (1.1) stated in the introduction.

Corollary 3.1. Given any domain Ω in Rd, let K = K(Ω) and W = W(Ω) respec-

tively denote the constants appearing in Lemmas 3.1 and 3.2. With every vector field

u∈H1(Ω;Rd), we associate the infinitesimal rigid vector field r(u)∈Rig(Ω) defined by,

for all x∈Ω,

r(u)(x) :=−
∫

Ω
u(x)dx+

(
−
∫

Ω
∇au(x)dx

)(
x−−

∫

Ω
x dx

)
.

Then, for all vector fields u∈H1(Ω;Rd),

‖u−r(u)‖L2(Ω)≤W(1+2K
√

d)‖∇su‖L2(Ω),

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤‖u−r(u)‖H1(Ω)≤ (1+W)(1+2K
√

d)‖∇su‖L2(Ω).

Proof. Let

B :=−
∫

Ω
∇au(x)dx, a :=−

∫

Ω

(
u(x)−Bx

)
dx.

Since the matrix B is anti-symmetric, the vector field r(u) : Ω→Rd,

(
r(u)

)
(x) :=a+Bx, ∀x∈Ω

belongs to Rig(Ω). Hence,

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤‖u−r(u)‖H1(Ω).

Since
∫

Ω
(u−r(u))(x)dx= 0, Poincaré-Wirtinger inequality (Lemma 3.2) fur-

ther implies that

‖u−r(u)‖L2(Ω)≤W
∥∥∇

(
u−r(u)

)∥∥
L2(Ω)

=W‖∇u−B‖L2(Ω).
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Then both inequalities of the theorem follow from the inequality

‖∇u−B‖L2(Ω)≤ (1+2K
√

d)‖∇su‖L2(Ω)

established in Theorem 3.1.

We conclude this section by showing that the above Korn inequalities also
hold with other choices of infinitesimal rigid vector fields r(u) in their left-hand
side. This will be useful in Section 5, to obtain better (meaning smaller) constants
C3 and C4 in Korn’s inequality (1.3) stated in the introduction.

To this end, we need two lemmas. The first one is about the continuity of the
trace operator for fields in H1(Ω), recalled below for reader’s convenience.

Lemma 3.3 (Trace Operator). Given any domain Ω⊂Rd and any non-empty relatively

open subset Γ0 of the boundary of Ω, there exists a constant T(Ω,Γ0) such that, for all

u∈H1(Ω;Rd),
‖u‖L2(Γ0)

≤T(Ω,Γ0)‖u‖H1(Ω).

Note the abuse of notation in the left-hand side of the above inequality, where u denotes

the image of u by the trace operator from H1(Ω;Rd) into L2(Γ0;Rd).

The second one states the following variants of Poincaré-Wirtinger inequality,
whose proofs are given for completeness.

Lemma 3.4 (Poincaré-Wirtinger). Let Ω be a domain in Rd and let W(Ω) be the con-

stant defined in Lemma 3.2.

(a) Given any non-empty open subset D of Ω, there exists a constant W(Ω,D) such

that

W(Ω,D)≤2

√
|Ω|
|D|W(Ω),

and, for all v∈H1(Ω;Rd),
∥∥∥∥v−−

∫

D
v(x)dx

∥∥∥∥
L2(Ω)

≤W(Ω,D)‖∇v‖L2(Ω).

(b) Given any non-empty relatively open subset Γ1 of a Lipschitz hypersurface Γ in Ω

(e.g. Γ=∂Ω), there exists a constant W(Ω,Γ1) such that

W(Ω,Γ1)≤W(Ω)+
(
1+W(Ω)

)
T(Ω,Γ1)

√
|Ω|
|Γ1|

,
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where T(Ω,Γ1) denotes the constant defined in Lemma 3.3, and, for all v∈H1(Ω;Rd),
∥∥∥∥v−−

∫

Γ1

v(x)dx

∥∥∥∥
L2(Ω)

≤W(Ω,Γ1)‖∇v‖L2(Ω).

Proof. Let v ∈ H1(Ω;Rd). Then, using in particular Cauchy-Schwarz inequality

and Lemma 3.2, we have∥∥∥∥v−−
∫

D
v

∥∥∥∥
L2(Ω)

≤
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Ω)

+|Ω|1/2

∣∣∣∣−
∫

D

(
v−−

∫

Ω
v

)∣∣∣∣

≤
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Ω)

+

√
|Ω|
|D|

∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
L2(D)

≤
(

1+

√
|Ω|
|D|

)∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
L2(Ω)

≤2

√
|Ω|
|D|W(Ω)‖∇v‖L2(Ω).

To prove the second inequality of the lemma, we first notice that
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Γ1)

≤T(Ω,Γ1)

∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
H1(Ω)

≤T(Ω,Γ1)

(∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
L2(Ω)

+‖∇ f‖L2(Ω)

)
.

Using in particular Lemma 3.3, we next deduce that
∥∥∥∥v−−

∫

Γ1

v

∥∥∥∥
L2(Ω)

≤
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Ω)

+|Ω|1/2

∣∣∣∣−
∫

Γ1

(
v−−

∫

Ω
v

)∣∣∣∣

≤
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Ω)

+

√
|Ω|
|Γ1|

∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
L2(Γ1)

≤
∥∥∥∥v−−

∫

Ω
v

∥∥∥∥
L2(Ω)

+

√
|Ω|
|Γ1|

T(Ω,Γ1)

(∥∥∥∥v−−
∫

Ω
v

∥∥∥∥
L2(Ω)

+‖∇v‖L2(Ω)

)
.

Then, by using the usual Poincaré-Wirtinger inequality (Lemma 4.2), we finally

deduce that
∥∥∥∥v−−

∫

Γ1

v

∥∥∥∥
L2(Ω)

≤
[(

1+

√
|Ω|
|Γ1|

T(Ω,Γ1)

)
W(Ω)+

√
|Ω|
|Γ1|

T(Ω,Γ1)

]
‖∇v‖L2(Ω),

which is precisely the second inequality of the lemma.
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We are now in a position to prove the following theorem, which generalizes
both Theorem 3.1 and Corollary 3.1.

Theorem 3.2. Given any domain Ω in Rd, let K=K(Ω) denote the constant appearing

in Lemma 3.1. Given any open set Ω′⊂Ω, let

C0(Ω,Ω′) :=4K
√

d
|Ω|1/2

|Ω′|1/2
.

Then, for all vector fields u∈H1(Ω;Rd), the following two inequalities hold:
∥∥∥∥∇au−−

∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

≤C0(Ω,Ω′)‖∇su‖L2(Ω),

∥∥∥∥∇u−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

≤
(
1+C0(Ω,Ω′)

)
‖∇su‖L2(Ω).

(3.2)

Furthermore, given any non-empty set Ω”⊂ Ω that is either on open subset of R
d, or

a relatively open subset of a Lipschitz hypersurface in Ω (such as the boundary of Ω),

define r(u)∈Rig(Ω) by letting, at each x∈Ω,

r(u)(x) :=

(
−
∫

Ω”
u

)
+

(
−
∫

Ω′
∇au

)(
x−−

∫

Ω”
x

)
.

Then, for all vector fields u∈H1(Ω;Rd), the following two inequalities hold:

‖u−r(u)‖L2(Ω)≤W(Ω”)
(
1+C0(Ω,Ω′)

)
‖∇su‖L2(Ω),

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤‖u−r(u)‖H1(Ω)

≤
(
1+W(Ω”)

)(
1+C0(Ω,Ω′)

)
‖∇su‖L2(Ω).

(3.3)

Proof. We first prove the inequalities (3.2). Let u∈H1(Ω,Rd). Since ∇u=∇su+
∇au, it suffices to prove that

∥∥∥∥∇au−−
∫

Ω′
∇au

∥∥∥∥
L2(Ω)

≤4K

√
d|Ω|
|Ω′| ‖∇su‖L2(Ω).

To this end, notice that
∣∣∣∣−
∫

Ω′
∇au−−

∫

Ω
∇au

∣∣∣∣=
∣∣∣∣−
∫

Ω′

(
∇au−−

∫

Ω
∇au

)∣∣∣∣≤|Ω′|−1/2

∥∥∥∥∇au−−
∫

Ω
∇au

∥∥∥∥
L2(Ω)

.
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Then, using the first inequality proved in Theorem 3.1 in the right-hand side

above shows that∥∥∥∥∇au−−
∫

Ω′
∇au

∥∥∥∥
L2(Ω)

≤
∥∥∥∥∇au−−

∫

Ω
∇au

∥∥∥∥
L2(Ω)

+|Ω|1/2

∣∣∣∣−
∫

Ω′
∇au−−

∫

Ω
∇au

∣∣∣∣

≤
(

1+
|Ω|1/2

|Ω′|1/2

)∥∥∥∥∇au−−
∫

Ω
∇au

∥∥∥∥
L2(Ω)

≤
(

2
|Ω|1/2

|Ω′|1/2

)
2K

√
d‖∇su‖L2(Ω).

This proves (3.2).

To prove inequalities (3.3), let

B :=−
∫

Ω′
∇au, a :=

(
−
∫

Ω′′
u

)
−B

(
−
∫

Ω′′
x

)
,

and (
r(u)

)
(x) :=a+Bx, ∀x∈Ω.

Since the matrix B is anti-symmetric, the vector field r(u) : Ω → Rd belongs to

Rig(Ω). Hence,

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤‖u−r(u)‖H1(Ω)≤‖u−r(u)‖L2(Ω)+‖∇u−B‖L2(Ω),

on the one hand.

On the other hand, since
∫

Ω′′(u−r(u))=0 (thanks to the definition of the vec-

tor a), we have by Lemma 3.4 that

‖u−r(u)‖L2(Ω)≤W(Ω,Ω′′)
∥∥∇

(
u−r(u)

)∥∥
L2(Ω)

=W‖∇u−B‖L2(Ω).

Then the inequalities (3.3) are obtained by combining the last two inequalities

with the following inequality (see Theorem 3.2):

‖∇u−B‖L2(Ω)≤
(
1+C0(Ω,Ω′)

)
‖∇su‖L2(Ω).

The proof is complete.

4 Korn’s inequalities for fields in H1
Γ0
(Ω;Rn)

The main objective of this section is to establish the second Korn inequality men-
tioned in the introduction, together with an explicit estimate of its constant C2.
To this end, we need an inequality about eigenvalues of matrices, which we now
prove.
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Lemma 4.1. (a) Let A=(aij)∈Md be a matrix whose components satisfy aij ≥ 0 and,

for all i∈{1,2,.. .,d}, ∑
d
j=1aij = 1 and ∑

d
j=1aji = 1. Then, for all vectors x=(xi)∈Rd

and y=(yi)∈R
d whose components satisfy x1≤ x2≤···≤ xd and y1≤y2≤···≤yd,

d

∑
i=1

d

∑
j=1

aijxiyj≥ x1yd+x2yd−1+···+xdy1.

(b) Let X ,Y∈Sd be two symmetric matrices with eigenvalues −∞<x1≤x2≤···≤xd<∞

and −∞<y1≤y2≤···≤yd<∞. Then

X :Y ≥ x1yd+x2yd−1+···+xdy1.

Proof. We first prove part (a) of the lemma. Let (λij) ∈ Md denote the matrix

defined by λij=1 if i+ j=d+1 and λij=0 otherwise, and let B=(bij)∈Md be the

matrix defined by bij := aij−λij. Then

d

∑
i=1

d

∑
j=1

aijxiyj=
d

∑
i=1

d

∑
j=1

(λij+bij)xiyj=(x1yd+x2yd−1+···+ddy1)+xTBy.

It suffices to prove that xTBy≥0. Note that, for every i∈{1,2,.. .,d},

d

∑
j=1

bij=
d

∑
j=1

aij−
d

∑
j=1

λij=1−1=0, (4.1)

and, for every j∈{1,2,.. .,d},

d

∑
j=1

bij=
d

∑
j=1

aij−
d

∑
j=1

λij=1−1=0, (4.2)

so that we have, for every pair of indices k,ℓ∈{1,2,.. . ,d},

k

∑
i=1

ℓ

∑
j=1

bij=
k

∑
i=1

(
−

d

∑
j=ℓ+1

bij

)
=−

d

∑
j=ℓ+1

(
k

∑
i=1

bij

)
=−

d

∑
j=ℓ+1

(
−

d

∑
i=k+1

bij

)

=
d

∑
i=k+1

d

∑
j=ℓ+1

bij.

Since bij=aij≥0 whenever i+ j 6=d+1, at least one of the two sets {bij;1≤ i≤k,

1≤ j≤ℓ} and {bij; k+1≤i≤d, ℓ+1≤ j≤d} contains only non-negative numbers (if



14 C. Mardare and T. H. Nguyen / Commun. Math. Anal. Appl., x (2024), pp. 1-39

k+ℓ≤d, then all the elements in the first set are non-negative, if k+ℓ≥d, then all

the elements in the second set are non-negative). Then we infer from the previous

relation that, on the one hand,

k

∑
i=1

ℓ

∑
j=1

bij≥0 for every pair of indices k,ℓ∈{1,2,.. . .,d}.

On the other hand, denoting ek :=(1,.. .,1,0,. . .,0)T∈Rd (the first k components

of ek are equal to 1), we deduce Bed=0 and eT
d B=0 respectively by relations (4.1)

and (4.2), then that

xTBy=

(
d−1

∑
k=1

(xk−xk+1)ek+xded

)T

B

(
d−1

∑
ℓ=1

(yℓ−yℓ+1)eℓ+yded

)

=
d−1

∑
k=1

d−1

∑
ℓ−1

(xk−xk+1)(yℓ−yℓ+1)e
T
k Beℓ.

Therefore,

xTBy=
d−1

∑
k=1

d−1

∑
l−1

(xk−xk+1)(yl−yl+1)

(
k

∑
i=1

l

∑
j=1

bij

)
≥0.

Part (b) of the lemma follows from part (a) as follows. Let

DX =diag(x1,x2,. . .,xd), DY =diag(y1,y2,. . .,yd)

denote the diagonal matrices formed by the eigenvalues of X and Y . Then there

exist orthogonal matrices P and Q such that X =PTDX P and Y =QTDY Q. Con-

sequently,

X :Y =PTDX P : QTDY Q=QPTDX PQT : DY =RTDX R : DY ,

where R=PQT, or equivalently ([·]ij denotes the component at row i and column j

of the matrix between the brackets),

X :Y =
d

∑
j=1

[
RTDX R

]
jj

yj=
d

∑
j=1

(
d

∑
k=1

d

∑
i=1

[RT]jk[DX ]ki[R]ij

)
yj

=
d

∑
j=1

d

∑
i=1

[RT]jixi[R]ijyj=
d

∑
j=1

d

∑
i=1

([R]ij)
2xiyj.
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Let aij :=([R]ij)
2. Since the matrix R is orthogonal as a product of orthogonal

matrices, we have RRT =RTR= I, which implies in particular that

d

∑
j=1

aij =
d

∑
j=1

([R]ij)
2=1, ∀i∈{1,2,.. .,d},

d

∑
i=1

aij=
d

∑
i=1

([R]ij)
2=1, ∀ j∈{1,2,.. .,d}.

Since in addition aij ≥ 0 for all i, j∈{1,2,.. .,d}, the matrix A=(aij)∈Md satisfies

all the assumptions of part (a) of the lemma. Therefore,

X :Y =
d

∑
i=1

d

∑
j=1

aijxiyj≥ x1yd+x2yd−1+···+xdy1.

The proof is complete.

We will also need Poincaré inequality, which are stated below (without proof)
for clarity.

Lemma 4.2 (Poincaré). Given any domain Ω⊂Rd and any non-empty relatively open

subset Γ0 of the boundary of Ω, there exists a constant P(Ω,Γ0) such that, for all u ∈
H1

Γ0
(Ω;Rd),

‖u‖L2(Ω)≤P(Ω,Γ0)‖∇u‖L2(Ω).

We are now in a position to prove the main result of this section, which gives
an upper bound for the constant C2 appearing in Korn’s inequality (1.2) stated in
the introduction.

Theorem 4.1 (Korn Inequality for Fields Satisfying Boundary Conditions). Given

any domain Ω in Rd, d ≥ 3, and any non-empty relatively open subset Γ0 ⊂ Γ of the

boundary Γ :=∂Ω, let x0 :=−
∫

Γ0
x dΓ0, let p1 and p2 denote the two smallest eigenvalues

of the symmetric semi-positive definite matrix
∫

Γ0
(x−x0)(x−x0)

T dx, and K=K(Ω),

W =W(Ω), P=P(Ω,Γ0) and T=T(Ω,Γ0) be the constants appearing in Lemmas 3.1,

3.2, 4.1 and 4.2. Define the constant

c2= c2(Ω,Γ0) :=(1+2K
√

d)

(
1+T(1+W)

√
d|Ω|

p1+p2

)
.

Then, for all u∈H1
Γ0
(Ω;Rd),

‖∇u‖L2(Ω)≤ c2‖∇su‖L2(Ω), (4.3)

‖u‖H1(Ω)≤ c2(1+P)‖∇su‖L2(Ω). (4.4)
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Proof. Inequality (4.4) is obtained by combining inequality (4.3) with Poincaré

inequality (see Lemma 4.2).

Inequality (4.3) will be established below as a consequence of Korn’s inequal-

ity established in Theorem 3.1, by using Lemmas 3.3, 4.1 and 4.2 to estimate the

norm of the matrix appearing in this Korn inequality.

So let u∈H1
Γ0
(Ω;Rd) and let B=−

∫
Ω
∇au dx∈Ad be the anti-symmetric matrix

appearing in the first inequality of Theorem 3.1. Then Theorem 3.1 implies that

‖∇u−B‖L2(Ω)≤ c1‖∇su‖L2(Ω),

where c1 :=(1+2K
√

d), then that

‖∇u‖L2(Ω)≤ c1‖∇su‖L2(Ω)+|Ω|1/2|B|. (4.5)

If B=0, then

‖∇u‖L2(Ω)≤ c1‖∇su‖L2(Ω),

and the first inequality of the theorem holds with c2= c1.

If B 6=0, we estimate the norm |B| appearing in the right-hand side of (4.5) in

the following way. Since the trace of u vanishes on Γ0, we infer from Lemma 3.3

that, for every vector a∈Rd,

‖a+B(x−x0)‖L2(Γ0)
=
∥∥u(x)−

(
a+B(x−x0)

)∥∥
L2(Γ0)

≤T
∥∥u(x)−

(
a+B(x−x0)

)∥∥
H1(Ω)

.

In particular, for

a=−
∫

Ω

(
u(x)−B(x−x0)

)
dx,

we have

‖a+B(x−x0)‖L2(Γ0)
≤T

∥∥∥∥u−−
∫

Ω
u(x)dx−B

(
x−−

∫

Ω
x dx

)∥∥∥∥
H1(Ω)

,

which combined with Poincaré-Wirtinger inequality (Lemma 3.2) and with the

first inequality of Theorem 3.1, shows that

‖a+B(x−x0)‖L2(Γ0)
≤T(1+W)‖∇u−B‖L2(Ω)≤T(1+W)c1‖∇su‖L2(Ω).

Besides, the definition of x0 (see the statement of Theorem 4.1) implies that∫
Γ0
(x−x0)dσ=0, so that the left-hand side of the above inequality satisfies

‖a+B(x−x0)‖2
L2(Γ0)

=‖a‖2
L2(Γ0)

+‖B(x−x0)‖2
L2(Γ0)

≥‖B(x−x0)‖2
L2(Γ0)

.



C. Mardare and T. H. Nguyen / Commun. Math. Anal. Appl., x (2024), pp. 1-39 17

Then we infer from the previous inequality that

‖B(x−x0)‖L2(Γ0)
≤T(1+W)c1‖∇su‖L2(Ω). (4.6)

We now estimate the left-hand side of the above inequality from below. Firstly,

we recast its square as

‖B(x−x0)‖2
L2(Ω)=

∫

Γ0

B(x−x0)·B(x−x0)dx

=
∫

Γ0

BTB : (x−x0)(x−x0)
T dx

=BTB : M,

where

M :=
∫

Γ0

(x−x0)(x−x0)
T dΓ0∈M

d,

(x−x0) being considered here as a column-vector in Rd.

Second, let λ ≥ 0 denote the largest eigenvalue of the symmetric and semi-

positive definite matrix BTB. Using that the matrix B is anti-symmetric and non-

zero, we deduce that BTB=−B2, that λ>0, and that the multiplicity of λ is ≥2. To

prove the last assertion, we note that if v 6=0 is an eigenvector of the matrix BTB

associated with λ, then Bv is also an eigenvector associated with λ, and the family

{v,Bv} is linearly independent. Indeed, since the matrix B is anti-symmetric,

the relation (BTB)v = λv implies that (BTB)(Bv)= B(BTB)v = B(λv)= λ(Bv).
Besides, if for the sake of contradiction we assume that the family {v,Bv} were

linearly dependent, then Bv= pv for some scalar p∈R, and then

λv=(BTB)v=BT(pv)=−B(pv)=−p(Bv)=−p2v.

Thus, (λ+p2)v=0, which is impossible since λ>0 and v 6=0.

Third, let p1≤p2≤p3≤···≤pd denote the eigenvalues of the symmetric matrix

M∈Sd. Then we claim that p1≥0 and p2>0. That p1≥0 is clear, since the matrix M

is semi-positive definite by its definition. Assume for the sake of contradiction

that p2=0. Then p1= p2=0, so that there exist (at least) two linearly independent

vectors v1,v2 ∈Rd such that Mv1 = Mv2 = 0. Consequently, using the definition

of the matrix M, we have, for each i∈{1,2},

0=vT
i Mvi =

∫

Γ0

∣∣(x−x0)
Tvi

∣∣2 dσ.
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This implies that (x−x0)v1=(x−x0)v2=0 for all x∈Γ0, which means that all the

points of Γ0 belong to the intersection of two distinct hyperplanes in Rd passing

by x0, which is impossible since Γ0 is a relatively open subset of the boundary of

a domain in R
d.

Noting that the eigenvalues of both matrices BTB and M are all ≥ 0 (since

both matrices are symmetric and semi-positive definite), we infer from the above

three observations and from Lemma 4.1 that the left-hand side of (4.6) satisfies

‖B(x−x0)‖2
L2(Ω)=BTB : M ≥λ(p1+p2)

≥ Tr(BTB)

d
(p1+p2)

=
|B|2

d
(p1+p2).

Consequently,

(
p1+p2

d

)1/2

|B|≤‖B(x−x0)‖L2(Γ0)
≤T(1+W)c1‖∇su‖L2(Ω),

so that the norm of matrix B is bounded above by

|B|≤
(

d

p1+p2

)1/2

T(1+W)c1‖∇su‖L2(Ω).

Then we infer from (4.5) that

‖∇u‖L2(Ω)≤ c1‖∇su‖L2(Ω)+|Ω|1/2|B|

≤ c1

(
1+T(1+W)

√
d|Ω|

p1+p2

)
‖∇su‖L2(Ω).

This completes the proof of the theorem.

5 Korn’s inequalities for fields in H1(Ω;Rn)

The objective of this section is to prove inequality (1.3) mentioned in the intro-
duction, viz.,
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‖u‖H1(Ω)≤C3‖∇su‖L2(Ω)+C4‖u‖L2(Ω), ∀u∈H1(Ω;Rd), (5.1)

which is often referred to as the Korn inequality of the second kind, and to pro-
vide at the same time explicit constants C3=C3(Ω,Ω′) and C4=C4(Ω,Ω′) in terms
of the constant K(Ω) defined in Lemma 3.1 (about the divergence equation) and
of a given open subset Ω′ of Ω. The novelty is that the shape of the set Ω′ is
adapted in this paper to the shape of the domain Ω in order to improve the clas-
sical estimates, e.g. Kondratev and Oleinik [14], where Ω′ is a ball (which leads
to non-optimal estimates for thin domains).

We will show that the above inequality can be deduced from the inequality
(see Corollary 3.1)

‖u−r(u)‖H1(Ω)≤ c1(1+W)‖∇su‖L2(Ω) (5.2)

for all u∈H1(Ω;Rd), where, for all x∈Ω,

r(u)(x) :=−
∫

Ω
u(x)dx+

(
−
∫

Ω
∇au(x)dx

)(
x−−

∫

Ω
x dx

)
(5.3)

combined with specific estimates of the norms of the vector −
∫

Ω
u(x)dx and of the

matrix −
∫

Ω
∇au(x)dx in terms of the norms ‖u‖L2(Ω) and ‖∇su‖L2(Ω). Since

∣∣∣∣−
∫

Ω
u(x)dx

∣∣∣∣≤|Ω|−1/2‖u‖L2(Ω), ∀u∈H1(Ω;Rd),

it remains to estimate the norm of the matrix −
∫

Ω
∇au(x)dx.

This is possible, but the result would not be optimal. This is why, instead of
inequality (5.2) with the choice of r(u) given by (5.3), we will deduce (5.1) from
the more general estimate (see Theorem 3.2)

‖u−r(u)‖H1(Ω)≤ c1(Ω,Ω′)
(
1+W(Ω,Ω′)

)
‖∇su‖L2(Ω) (5.4)

for all u∈H1(Ω;Rd), where, for all x∈Ω,

r(u)(x) :=−
∫

Ω′′
u+

(
−
∫

Ω′
∇au

)(
x−−

∫

Ω′′
x

)
, (5.5)

by choosing Ω′ in such a way that |−
∫

Ω′∇au(x)dx| be bounded above by ‖u‖L2(Ω)
multiplied by a constant. The essence of our argument to find such an upper
bound, the details of which are given in the proofs of the following three theo-
rems, is that, for all u=(ui)∈C1(Ω;Rd), we have

∣∣∣∣
∫

Ω′
∇au(x)dx

∣∣∣∣=
1

2

∣∣∣∣
∫

∂Ω′

(
uj(x)ni(x)−ui(x)nj(x)

)
dσ

∣∣∣∣≤
∫

∂Ω′
|u(x)|dσ
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for every domain Ω′⊂Ω, on the one hand. On the other hand, by Fubini’s theo-
rem, there exists a domain Ω′⊂Ω such that

−
∫

∂Ω′
|u(x)|dσ≤−

∫

Ω
|u(x)|dx.

The shape of Ω′ is a matter of choice, but to obtain better (meaning smaller)
constants C3 and C4 in inequality (5.1), one needs to choose Ω′ to mimic the
shape of Ω. This is why we consider below three possible choices for Ω′: a ball,
a cylinder, or a curved cylinder, corresponding to three typical cases, whereby Ω

is a bulky domain in all directions, a flat thin domain (like a plate with small
thickness), or a curved thin domain (like a shell with small thickness), in view of
their application in the mathematical theory of elasticity (which will be presented
in a forthcoming paper [15]).

Theorem 5.1. Given any domain Ω in Rd, let K=K(Ω) denote the constant appearing

in Lemma 3.1. Let R>0 be any constant such that there exists an open ball BR contained

in Ω and let

C3(Ω,BR) :=1+C(d)K
|Ω|1/2

|BR |1/2
, C(d) :=d1/222+d/2,

C4(Ω,BR) :=1+
3d

R

|Ω|1/2

|BR|1/2
.

(5.6)

Then, for all vector fields u∈H1(Ω;Rd),

‖u‖H1(Ω)≤C3(Ω,BR)‖u‖L2(Ω)+C4(Ω,BR)‖∇su‖L2(Ω). (5.7)

In particular, for all u∈H1(Ω;Rd),

‖u‖H1(Ω)≤
(

1+C(d)(R−1+K)
|Ω|1/2

|BR|1/2

)
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
, (5.8)

where C(d) is a constant depending only on the dimension d of Ω.

Proof. The proof is broken for clarity into three parts, numbered (i) to (iii).

(i) Let BR :=B(x0,R)⊂Ω. Given any continuous function f : BR →R, we have

∫

BR\BR/2

f dx=
∫ R

R/2

(∫

Sr

f dSr

)
dr,
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where Sr := ∂BR and dSr is the measure induced on Sr by the Lebesgue measure

in Rd. Let g : [R/2,R]→R de the function defined by g(r) := −
∫

Sr
f dSr for all r ∈

[R/2,R], so that

−
∫

BR\BR/2

f dx=
1

|BR\BR/2|
∫ R

R/2
g(r)|Sr |dr.

Since ∫ R

R/2
|Sr|dr=

∫ R

R/2

∫

Sr

dSrdr=
∫

BR\BR/2

dx,

the previous relations implies that

inf
r∈[R/2,R]

g≤−
∫

BR\BR/2

f dx≤ sup
r∈[R/2,R]

g(r).

Since the function g is continuous, there exists r′∈ [R/2,R] such that

−
∫

BR\BR/2

f dx=−
∫

Sr′
f dSr′ .

(ii) Let BR :=B(x0,R)⊂Ω. Given any vector field u∈C1(Ω;Rd), there exists (cf.

part (i) above) r′= r′(u)∈ [R/2,R] such that

−
∫

BR\BR/2

|u|2 dx=−
∫

Sr′
|u|2dSr′ . (5.9)

Let Ω′ :=Br′ . Then
∫

Ω′
∇au dx=

∫

Br′
∇au dx=

1

2

∫

Br′
(∂iuj−∂jui)dx=

1

2

∫

Sr′
(niuj−njui)dSr′ ,

where Sr′ denotes the boundary of Br′ and ni(x)= (xi−x0,i)/|x−x0| denotes the

i-th component of the outer unit normal vector at x to the boundary of Ω′, so that
∣∣∣∣−
∫

Ω′
∇au dx

∣∣∣∣=
|Sr′ |

2|Br′ |

∣∣∣∣−
∫

Sr′
(niuj−njui)

∣∣∣∣

=
|Sr′ |
|Br′ |

−
∫

Sr′
|(niuj)|dSr′

≤ |Sr′ |
|Br′ |

(
−
∫

Sr′
|(niuj)|2dSr′

)1/2

=
|Sr′ |
|Br′ |

(
−
∫

Sr′
|u|2dSr′

)1/2

.
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Combined with relation (5.9), this implies that the L2(Ω)-norm of the constant

vector field −
∫

Ω′∇au dx is bounded above by

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

= |Ω|1/2

∣∣∣∣−
∫

Ω′
∇au dx

∣∣∣∣

≤|Ω|1/2 |Sr′ |
|Br′ |

(
−
∫

Sr′
|u|2dSr′

)1/2

≤|Ω|1/2 |Sr′ |
|Br′ |

(
−
∫

BR\BR/2

|u|2 dx

)1/2

.

Furthermore, using that |Br|=rd|B1|, |Sr|=rd−1|S1|, |Br\Br/2|=rd(1−2−d)|B1| for

all r>0, we deduce that

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

≤|Ω|1/2 |Sr′ |
|Br′ |

1

|BR\BR/2|1/2

(∫

BR\BR/2

|u|2 dx

)1/2

≤|Ω|1/2 |S1|
r′|B1||B1|1/2Rd/2(1−2−d)1/2

‖u‖L2(BR\BR/2)
.

Finally, using that r′≥R/2,d≥1, |S1 |=d|B1| and BR⊂Ω, we obtain that

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

≤ |Ω|1/2

|B1|1/2

3d

R1+d/2
‖u‖L2(Ω). (5.10)

(iii) Let u∈C1(Ω;Rd). Then

‖u‖H1(Ω)≤‖u‖L2(Ω)+‖∇su‖L2(Ω)

+

∥∥∥∥∇au dx−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

+

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

,

so that, by inequality (5.10) established above, we have

‖u‖H1(Ω)≤
(

1+
|Ω|1/2

|B1|1/2

3d

R1+d/2

)
‖u‖L2(Ω)+‖∇su‖L2(Ω)

+

∥∥∥∥∇au dx−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

.
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Then we conclude by applying Theorem 3.2 (see inequality (3.2)) that

‖u‖H1(Ω)≤C3‖u‖L2(Ω)+

(
1+4K

√
d|Ω|
|Ω′|

)
‖∇su‖L2(Ω)

≤C3‖u‖L2(Ω)+C4‖∇su‖, (5.11)

where

C3 :=1+
3d

R

|Ω|1/2

|BR|1/2

and (remember that Ω′=Br′ with r′∈ [R/2,R], cf. part (ii) of the proof)

C4 :=1+d1/222+d/2K
|Ω|1/2

|BR|1/2
.

Since Ω is a domain by the assumptions of the theorem, so in particular its

boundary is Lipschitz-continuous, the set C1(Ω;Rd) is dense in the Sobolev space

H1(Ω;Rd). Thus, inequality (5.7) of the theorem holds with the same constants C3

and C4 for all vector fields u∈H1(Ω;Rd).

This inequality implies in particular that, for some constant C(d) depending

only on the dimension d of the domain Ω, the following inequality holds for all

u∈H1(Ω;Rd):

‖u‖H1(Ω)≤
(

1+C(d)[R−1+K]
|Ω|1/2

|BR|1/2

)
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
.

This completes the proof of the theorem.

Note that the larger R, the sharper the above inequality. Thus, the best choice
of R is the radius of the largest open ball BR contained in Ω. This means that
the above constants C3 and C4 are suitable for “bulky” domains (where the size
of BR is “of the same order” as the size of the diameter of Ω), but not for “thin”
domains Ω (where the ratio R/diam(Ω) is close to zero). We will show in the re-
mainder of this section how to obtain sharper Korn inequalities for such domains,
simply by adapting the choice of the subset Ω′ to the shape of the domain Ω. We
consider for conciseness only two examples, a “plate-like” domain Ω in the next
theorem, and a “shell-like” in Theorem 5.3.

Theorem 5.2. Given any domain Ω in R
d, let K=K(Ω) denote the constant appearing

in Lemma 3.1. Let R>0 and h>0 be any two constants such that there exists a cylinder

BR,h := bR× Ih, bR := {y∈Rd−1; |y−y0|< R} and Ih :=(z0−h,z0+h)⊂R such that

BR,h⊂Ω. Define the constants
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C3(Ω,BR,h) :=1+4(d−1)R−1 |Ω|1/2

|BR,h|1/2
,

C4(Ω,BR,h) :=1+(1+4K
√

d)
|Ω|1/2

|BR,h|1/2
.

(5.12)

Then, for all vector fields u∈H1(Ω;Rd),

‖u‖H1(Ω)≤C3(Ω,BR,h)‖u‖L2(Ω)+C4(Ω,BR,h)‖∇su‖L2(Ω). (5.13)

In particular, there exists a constant C(d) depending only on the dimension d such that

‖u‖H1(Ω)≤
{

1+C(d)(1+R−1+K)
|Ω|1/2

|BR,h|1/2

}
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
. (5.14)

Proof. Let ΩR :=BR,h be the cylinder defined in the statement of the theorem (we

drop for conciseness the dependence on h for conciseness). We assume without

losing in generality that it is centered at the origin, so (y0,z0)=0.

The proof is broken for clarity into three parts, numbered (i) to (iii).

(i) Let Σr :=∂br×(−h,h),r∈ [R/2,R], denote the lateral boundary of the cylin-

der Ωr. Then for any f ∈C0(ΩR), we have

∫

ΩR\ΩR/2

f dx=
∫ R

R/2

(∫

Σr

f dΣr

)
dr,

from which wet deduce, by using an argument similar to the one used in the

proof of Theorem 5.1, that there exists r′∈ [R/2,R] such that

−
∫

ΩR\ΩR/2

f dx=−
∫

Σr′
f dΣr′ .

(ii) Given any vector field u∈C1(Ω,Rd), part (i) of the proof shows that there

exists r′= r′(u)∈ [R/2,R] such that

−
∫

ΩR\ΩR/2

|u|2 dx=−
∫

Σr′
|u|2 dΣr′ . (5.15)

Let Ω′ :=Ωr′ . Using that

[∇au]ij=
1

2
(∂jui−∂iuj)=∂jui−

1

2
(∂jui+∂iuj),
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and that the components nj,1≤ j≤d, of the outer unit normal vector field on the

two bases br′×{+h} and br′×{−h} of the cylinder Ω′ vanish unless j = d, we

deduce that, for each pair (i, j) of indices that satisfy 1≤ j< i≤d,
∫

Ω′
[∇au]ij dx=

∫

Ω′
∂jui dx−

∫

Ω′
[∇su]ij dx

=
∫

Σr′
uinj dΣr′−

∫

Ω′
[∇su]ij dx,

where [∇su]ij denotes the component of the matrix field ∇su at its i-th row and

j-th column. Consequently,
∫

Ω′
∇audx=

∫

Σr′
A dΣr′−

∫

Ω′
B dx,

where A and B respectively denote the anti-symmetric matrix fields with compo-

nents [A]ij=uinj and [B]ij=[∇su]ij for all 1≤ j< i≤d.

Using in particular Cauchy-Schwarz inequality, we deduce that the Frobenius

norm of the matrix in the left-hand side of the above relation satisfies the inequa-

lity
∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤
∣∣∣∣
∫

Σr′
AdΣr′

∣∣∣∣+
∣∣∣∣
∫

Ω′
B dx

∣∣∣∣

≤|Σr′ |1/2

(∫

Σr′
|A|2 dΣr′

)1/2

+|Ω′|1/2

(∫

Ω′
|B|2 dx

)1/2

=

(
2|Σr′ |

∫

Σr′
∑

1≤j<i≤d

(uinj)
2 dΣr′

)1/2

+

(
2|Ω′|

∫

Ω′ ∑
1≤j<i≤d

([∇su]ij)
2 dx

)1/2

.

Since ∑
d
j=1(nj)

2=1 on Σr′ and since the matrix filed ∇su is symmetric, we deduce

from the above inequality that

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤
(

2|Σr′ |
∫

Σr′
|u|2 dΣr′

)1/2

+

(
|Ω′|

∫

Ω′
|∇su|2 dx

)1/2

,

then, by using inequality (5.15) in the right-hand side above, that

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤
√

2|Σr′ |
(
−
∫

ΩR\ΩR/2

|u|2 dx

)1/2

+|Ω′|1/2‖∇su‖L2(Ω′)
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=

√
2|Σr′ |

|ΩR\ΩR/2|1/2
‖u‖L2(ΩR\ΩR/2)

+|Ω′|1/2‖∇su‖L2(Ω′),

and finally, since Ω′=Ωr′ ⊂ΩR ⊂Ω, that
∥∥∥∥−
∫

Ω′
∇audx

∥∥∥∥
L2(Ω)

= |Ω|1/2

∣∣∣∣−
∫

Ω′
∇au dx

∣∣∣∣

≤ |Ω|1/2

|Ω′|

( √
2|Σr′ |

|ΩR\ΩR/2|1/2
‖u‖L2(Ω)+|Ω′|1/2‖∇su‖L2(Ω)

)
.

(iii) Let u∈C1(Ω,Rd). Then

‖u‖H1(Ω)≤‖u‖L2(Ω)+‖∇su‖L2(Ω)+

∥∥∥∥∇au−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

+

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

,

which combined with the previous inequality yields

‖u‖H1(Ω)≤‖u‖L2(Ω)+‖∇su‖L2(Ω)+
|Ω|1/2

|Ω′|

√
2|Σr′ |

|ΩR\ΩR/2|1/2
‖u‖L2(Ω)

+
|Ω|1/2

|Ω′| |Ω′|1/2‖∇su‖L2(Ω)+

∥∥∥∥∇au−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

.

The last term of the right-hand side above is bounded above by Korn’s inequality

(3.2). This yields the inequality

‖u‖H1(Ω)≤C3(r
′)‖∇su‖L2(Ω)+C4(r

′)‖u‖L2(Ω),

where

C3(r
′) :=1+

|Ω|1/2

|Ω′| |Ω′|1/2+4K

√
d|Ω|
|Ω′| =1+

|Ω|1/2

|Ω′|1/2
(1+4K

√
d),

C4(r
′) :=1+

|Ω|1/2

|Ω′|

√
2|Σr′ |

|ΩR\ΩR/2|1/2
.

Since Ω′=Ωr′ =Br′,h := br′×(−h,h), where br′ :={y∈Rd−1;|y|< r′},d≥2, and

R/2≤ r′≤R, we have

|Σr′ |
|Ω′| =

d−1

r′
≤ 2(d−1)

R
,
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|ΩR\ΩR/2|=(1−21−d)|BR,h|≤
1

2
|BR,h|,

|Ω′|≤ |BR,h|,

so that, for all r′∈ [R/2,R],

C3(r
′)≤C4(Ω,BR,h) :=1+(1+4K

√
d)

|Ω|1/2

|BR,h|1/2
,

C3(r
′)≤C3(Ω,BR,h) :=1+4(d−1)R−1 |Ω|1/2

|BR,h|1/2
.

Since Ω is a domain (the definition of a domain is given in Section 2) by the as-

sumptions of the theorem, so in particular its boundary is Lipschitz-continuous,

the set C1(Ω;Rd) is dense in the Sobolev space H1(Ω;Rd). Thus, the inequality

‖u‖H1(Ω)≤C3(Ω,BR,h)‖u‖L2(Ω)+C4(Ω,BR,h)‖∇su‖L2(Ω),

holds for all vector fields u ∈ H1(Ω;Rd). This is precisely inequality (5.13) an-

nounced in the statement of the theorem.

This inequality implies in particular that, for some explicit constant C(d)
depending only on the dimension d, the following inequality holds for all u ∈
H1(Ω;Rd):

‖u‖H1(Ω)≤
[

1+C(d)(1+R−1+K)
|Ω|1/2

|BR,h|1/2

]
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
.

This is precisely inequality (5.14) of the theorem. The proof is complete.

Note that inequality (5.14) of Theorem 5.2 is sharper than inequality (5.8) of
Theorem 5.2, since it replaces |Ω|/|BR | by |Ω|/|BR,h| in its right-hand side. This is
an advantage since larger (up to the multiplication by a fixed constant) cylinders
than balls fit inside a domain, as is the case for instance of thin domains such as
Ω :=ω×(−h,h) or Ω :=B(0,R)×(0,1) with h→0+ and R→0+.

The next theorem further improve this inequality by replacing the “straight”
cylinder BR,h by a “curved” one, which are for instance needed for domains Ω

that are thin open neighbourhoods of hypersurfaces in Rd. Note that the con-
stants D and E appearing in the statement of the theorem satisfy D ≤ (B/d)d/2

and E≤(A/d)d/2 , so they can be replaced by these right-hand sides for a simpler
statement.
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Theorem 5.3. Given any domain Ω in Rd,d≥2, let K=K(Ω) denote the constant ap-

pearing in Lemma 3.1. Given any numbers 0<R≤R0 and 0<h≤h0 and any embedding

Θ∈C2(BR0,h0
;Rd) such that Θ(BR0,h0

)⊂Ω, where

BR,h :=
{(

y′,yd

)
∈R

d−1×R; |y′|<R, |yd|<h
}

,

define the constants

C3(Ω,Θ,BR,h) :=1+(AB+4K
√

d)
|Ω|1/2

|Θ(BR,h)|1/2
,

C4(Ω,Θ,BR,h) :=1+A1/2B

(
C1/2+2(d+1)/2(d−1)D1/2E1/2 1

R

) |Ω|1/2

|Θ(BR,h)|1/2
,

(5.16)

where A, B,C, D and E are constants such that

|∇Θ|2≤A, |(∇Θ)−1|2≤B,

d

∑
i 6=j=1

∣∣∣∣∇Θ
−1 ∂2

Θ

∂yi∂yj

∣∣∣∣
2

≤C, D−1≤|det∇Θ|≤E in BR0,h0
.

Then, for all vector fields u∈H1(Ω;Rd),

‖u‖H1(Ω)≤C3(Ω,Θ,BR,h)‖u‖L2(Ω)+C4(Ω,Θ,BR,h)‖∇su‖L2(Ω). (5.17)

In particular, there exists a constant C(Θ,d) depending only on the dimension d and

on the mapping Θ such that

‖u‖H1(Ω)≤
{

1+C(Θ,d)(1+R−1+K)
|Ω|1/2

|BR,h|1/2

}
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
. (5.18)

Proof. For conciseness, we let ΩR :=BR,h denote the cylinder defined in the state-

ment of the theorem (so we drop the dependence on h in the notation) and let

Ω̃ :=BR0,h0
denote the closure of the cylinder BR0,h0

.

With the embedding Θ defined in the statement of the theorem, we associate

the vector fields g j∈C1(Ω̃;Rd) and gi∈C1(Ω̃;Rd) defined by, for all i, j∈{1,.. .,d},

g j=
∂Θ

∂yj
, gi ·g j=δi

j in Ω̃.

Note that the vectors fields g j,1≤ j ≤ d, are linearly independent at every point

of Ω̃, so they form a basis in Rd, since Θ is an embedding (hence immersion) by
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assumption, which in turn imply that the vector fields gi,1≤ i ≤ j, are uniquely

defined and of class C1 in Ω̃.

Then we define the matrix field

∇Θ=(g1| . . .|gd)∈C1(Ω̃;Md)

with g j as its j-th column vector, its inverse matrix field ∇Θ = (g1| . . .|gd)T ∈
C1(Ω̃;Md) with gi as its i-th row vector, the symmetric matrix field

C :=(∇Θ)T
∇Θ∈C1(Ω̃;Sd),

the function

g := |det(∇Θ)|2=det(C)∈C1(Ω̃),

and the functions

Γk
ij=Γk

ji :=
∂gi

∂yj
·gk ∈C0(Ω̃), i, j,k∈{1,.. . ,d}.

All the functions defined above are continuous on Ω̃, which is a compact set,

and g(y)>0 for all y∈ Ω̃, so there exist constants A= A(Θ), B=B(Θ),C=C(Θ),
D=D(Θ) and E=E(Θ) such that, for all y∈ Ω̃,

Tr
(
C(y)

)
= |∇Θ(y)|2 ≤A,

Tr
(
C−1(y)

)
= |∇Θ

−1(y)|2≤B,

D−1≤
√

g(y)= |det(∇Θ)|≤E,

and

∑
1≤i 6=j≤d

d

∑
k=1

∣∣Γk
ij

∣∣2=
d

∑
i 6=j=1

∣∣∣∣∇Θ
−1 ∂2

Θ

∂yi∂yj

∣∣∣∣
2

≤C.

Finally, given any vector field u = (ui) ∈ C1(Ω;Rd) , we define ũ = ũig
i ∈

C1(Ω̃;Rd) by ũ(y)=u(x) for all x=Θ(y),y∈ Ω̃, and the functions

ũi|j :=
∂ũi

∂yj
−Γk

ijũk ∈C0(Ω̃).

The proof is broken for clarity into three parts, numbered (i) to (iii).

(i) For each r∈ [R/2,R], let

Σr :={(y,z)∈R
d−1×R; |y|= r, |z|<h},

denote the lateral face of the cylinder Ωr. Then, for any f ∈C0(Ω), we have
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∫

Θ

(
ΩR\ΩR/2

) f dx=
∫

ΩR\ΩR/2

f ◦Θ
√

gdy=
∫ R

R/2

(∫

Σr

f ◦Θ
√

g dΣr

)
dr

=
∫ R

R/2
h(r)|Σr |dr,

where h(r) :=−
∫

Σr
f ◦Θ

√
g dΣr, on the one hand.

On the other hand, the relation
∫ R

R/2
|Σr|dr=

∫ R

R/2

(∫

Σr

dΣr

)
dr=

∫

ΩR\ΩR/2

dy= |ΩR\ΩR/2|

implies that

min
[R/2,R]

h≤ 1

|ΩR\ΩR/2|
∫ R

R/2
h(r)|Σr |dr≤ max

[R/2,R]
h.

Since the function h is continuous, it follows that there exists r′ ∈ [R/2,R] such

that

h(r′)=
1

|ΩR\ΩR/2|
∫ R

R/2
h(r)|Σr |dr,

or equivalently, that

−
∫

Σr′
f ◦Θ

√
g dΣr′ =

1

|ΩR\ΩR/2|
∫

Θ(ΩR\ΩR/2)
f dx.

(ii) Let u∈C1(Ω;Rd) and ũ:=u◦Θ∈C1(Ω̃;Rd). Then applying the above relation

to f := |u|2 shows that there exists r′= r′(u)∈ [R/2,R] such that

∫

Σr′
|ũ|2√gdΣr′ =

|Σr′ |
|ΩR\ΩR/2|

∫

Θ

(
ΩR\ΩR/2

) |u|2 dx. (5.19)

Define Ω′ :=Θ(Ωr′) a subset of Ω that is key to the ensuing proof.

Since, for all y∈ Ω̃, the vectors g1(y),. . . ,gd(y) form a basis in Rd, the matrices

gi(y)⊗g j(y):=gi(y)(g j(y))T , i, j∈{1,.. .,d}, form a basis in Md. Then the definition

of the functions ũi|j and Γk
ij in the preamble of the proof imply that

∂g j

∂yi
=Γk

ijgk,
∂gk

∂yi
=−Γk

ijg
j in Ω̃,

that
∂ũ

∂yj
= ũi|jgi,
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and that

(∇u)◦Θ= ũi|jgi⊗g j,

(∇su)◦Θ=
1

2
(ũi|j+ ũj|i)gi⊗g j,

(∇au)◦Θ=
1

2
(ũi|j− ũj|i)gi⊗g j.

In order to estimate the Frobenius norm of the anti-symmetric matrix
−
∫

Ω′∇au dx, we first have

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣=
∣∣∣∣
∫

Ωr′
∑
i 6=j

ũi|j− ũj|i
2

gi⊗g j√g dy

∣∣∣∣

=

∣∣∣∣
∫

Ωr′

[
∑
j<i

(
ũi|j−

ũi |j+ ũj|i
2

)
gi⊗g j

+∑
j>i

(
ũi|j+ ũj|i

2
− ũj|i

)
gi⊗g j

]√
g dy

∣∣∣∣

≤
∣∣∣∣
∫

Ωr′
∑
j<i

ũi|j
(

gi⊗g j−g j⊗gi
)√

g dy

∣∣∣∣

+

∣∣∣∣
∫

Ωr′
∑
j<i

ũi|j+ ũj|i
2

(
g j⊗gi−gi⊗g j

)√
g dy

∣∣∣∣. (5.20)

Noting that the components nj,1≤ j≤ d, of the outer unit normal vector field

on the two bases br′×{+h} and br′×{−h} of the cylinder Ω′ vanish unless j=d,

and that ∂k(
√

g) = (∑d
j=1Γ

j
kj)

√
g, so that ∑

d
k=1∂k(g

k√g) = 0, we deduce that, for

each pair (i, j) of indices that satisfy 1≤ j< i≤d,
∫

Ωr′
ũi|j
(

gi⊗g j−g j⊗gi
)√

gdy

=
∫

Ωr′
∂jũi

(
gi⊗g j−g j⊗gi

)√
g dy−

∫

Ωr′

(
d

∑
k=1

Γk
ijũk

)
(

gi⊗g j−g j⊗gi
)√

gdy

=
∫

Σr′
ũinj

(
gi⊗g j−g j⊗gi

)√
g dy−

∫

Ωr′
ũi

((
∂jg

i
)
⊗g j−g j⊗

(
∂jg

i
))√

g dy

−
∫

Ωr′

(
d

∑
k=1

ũkΓk
ij

)
(

gi⊗g j−g j⊗gi
)√

gdy.
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Besides,

−∑
j<i

ũi

((
∂jg

i
)
⊗g j−g j⊗

(
∂jg

i
))

=∑
j<i

ũi

d

∑
k=1

Γi
jk

(
gk⊗g j−g j⊗gk

)

=
d

∑
k=1

d−1

∑
j=1

(
d

∑
i=j+1

ũiΓ
i
jk

)
(

gk⊗g j−g j⊗gk
)

=∑
j<k

(
d

∑
i=j+1

ũiΓ
i
jk−

d

∑
i=k+1

ũiΓ
i
kj

)
(

gk⊗g j−g j⊗gk
)

=∑
j<k

(
k

∑
i=j+1

ũiΓ
i
jk

)
(

gk⊗g j−g j⊗gk
)

=∑
j<i

(
i

∑
k=j+1

ũkΓk
ji

)
(

gi⊗g j−g j⊗gi
)
.

Therefore, by combining the last two relation, we have

∫

Ω′∑
j<i

ũi|j
(

gi⊗g j−g j⊗gi
)√

gdy

=
∫

Σr′
∑
j<i

ũinj

(
gi⊗g j−g j⊗gi

)√
g dy

+
∫

Ωr′
∑
j<i

(
i

∑
k=j+1

ũkΓk
ji−

d

∑
k=1

ũkΓk
ij

)
(

gi⊗g j−g j⊗gi
)√

g dy.

Then we infer from inequality (5.20) that

∣∣∣∣
∫

Ω′
∇audx

∣∣∣∣≤
∣∣∣∣
∫

Σr′
∑
j<i

ũinj

(
gi⊗g j−g j⊗gi

)√
g dy

∣∣∣∣

+

∣∣∣∣∣

∫

Ωr′
∑
j<i

(

∑
k 6∈{j+1,...,i}

ũkΓk
ij

)
(

gi⊗g j−g j⊗gi
)√

g dy

∣∣∣∣∣

+

∣∣∣∣
∫

Ωr′
∑
j<i

ũi|j+ ũj|i
2

(
gi⊗g j−g j⊗gi

)√
gdy

∣∣∣∣. (5.21)
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To the right-hand side of this inequality is expressed in terms of anti-symmetric

matrix fields of type Y :=∑i<jỸij(g
i⊗g j−g j⊗gi) defined over Ωr′ , or over Σr′ . Let

Ykl denote the Cartesian components of Y , i.e Y =∑l<kYkl

(
ek⊗el−el⊗ek

)
, where

ek :=(δkj)
d
j=1, k∈{1,.. . ,d}, denote the vectors of the Cartesian basis in R

d. Then the

matrix field Ỹ :=(Ỹij) satisfies Ỹ =(∇Θ)TY∇Θ and therefore the following esti-

mates hold at all points of Ω̃ (the constants A and B are defined in the preamble

to the proof):

|Ỹ | :=
[
∑
i,j

(Yij)
2

]1/2

≤|∇Θ|2|Y |=Tr(C)|Y |≤A|Y |,

|Y | :=
[
∑
i,j

(Ỹij)
2

]1/2

≤|∇Θ
−1|2|Ỹ |=Tr(C−1)|Ỹ |≤B|Ỹ |.

Furthermore, with U denoting either the set Σr′ or the set Ωr′ , we have
∣∣∣∣
∫

U
Y
√

gdU

∣∣∣∣≤
(∫

U

√
gdU

)1/2(∫

U
|Y |2√g dU

)1/2

≤B

(∫

U

√
gdU

)1/2[∫

U
|Ỹ |2√g dU

]1/2

.

Using this inequality in (5.21) gives

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤B

(∫

Σr′

√
g dΣr′

)1/2
[∫

Σr′
2∑

j<i

(ũinj)
2√g dΣr′

]1/2

+B

(∫

Ωr′

√
gdy

)1/2
[∫

Ωr′
2∑

j<i

(

∑
k 6∈{j+1,...,i}

ũkΓk
ij

)2
√

gdy

]1/2

+B

(∫

Ωr′

√
gdy

)1/2
[∫

Ωr′
∑
j 6=i

(
ũi|j+ ũj|i

2

)2√
g dy

]1/2

, (5.22)

on the one hand.

On the other hand, since ∑
d
j=1(nj)

2=1 on Σr′ , we have

∑
j<i

(ũinj)
2≤
(

∑
i

(ũi)
2

)(
∑

j

(nj)
2

)
=∑

i

(u·gi)
2≤∑

i

|u|2|gi|2

= |u|2|∇Θ|2= |u|2Tr(C)≤A|u|2,
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2∑
j<i

(

∑
k 6∈{j+1,...,i}

ũkΓk
ij

)2

≤2∑
j<i

(

∑
k 6∈{j+1,...,i}

(ũk)
2

)(

∑
k 6∈{j+1,...,i}

(
Γk

ij

)2

)

≤
(

d

∑
k=1

(ũk)
2

)(
2∑

j<i

(

∑
k 6∈{j+1,...,i}

(
Γk

ij

)2

))

≤|ũ|2
(

∑
j 6=i

d

∑
k=1

(
Γk

ij

)2

)
≤AC|u|2,

∑
j 6=i

(
ũi|j+ ũj|i

2

)2

≤∑
i,j

(
ũi|j+ ũj|i

2

)2

≤A2|∇su|2.

Then we infer from inequality (5.22) that

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤B
√

2A

(∫

Σr′

√
gdΣr′

)1/2(∫

Σr′
|u|2√g dΣr′

)1/2

+B
√

AC

(∫

Ωr′

√
g dy

)1/2(∫

Ωr′
|u|2√g dy

)1/2

+AB

(∫

Ωr′

√
gdy

)1/2(∫

Ωr′
|∇su|2√gdy

)1/2

.

Using the relations
∫

Σr′

√
gdΣr′ ≤E|Σr′ |,

∫

Ωr′

√
gdy=

∫

Ω′
dx= |Ω′|,

and replacing the integral
∫

Σr′
|u|2√g dΣr′ by relation (5.19) in the right-hand side

of the above inequality yields

∣∣∣∣
∫

Ω′
∇au dx

∣∣∣∣≤
B
√

2AE|Σr′ |
|ΩR\ΩR/2|1/2

(∫

Θ(ΩR\ΩR/2)
|u|2 dx

)1/2

+B
√

AC|Ω′|1/2

(∫

Ωr′
|u|2√gdy

)1/2

+AB|Ω′|1/2

(∫

Ωr′
|∇su|2√gdy

)1/2

,

from which, by using in particular the change of variables x=Θ(y),y∈Ωr′ , in the

integrals above, we deduce that
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∣∣∣∣−
∫

Ω′
∇au dx

∣∣∣∣≤
B
√

2AE|Σr′ |
|Ω′||ΩR\ΩR/2|1/2

(∫

Θ

(
ΩR\ΩR/2)

|u|2 dx

)1/2

+
B
√

AC

|Ω′|1/2

(∫

Ω′
|u|2 dx

)1/2

+
AB

|Ω′|1/2

(∫

Ω′
|∇su|2 dx

)1/2

.

Finally, using that Ω′=Θ(Ωr′)⊂Θ(ΩR)⊂Ω, we obtain the estimate
∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

≤α‖∇su‖L2(Ω)+‖u‖L2(Ω),

where

α :=
AB|Ω|1/2

|Ω′|1/2
,

β :=
B
√

2AE|Σr′ ||Ω|1/2

|Ω′||ΩR\ΩR/2|1/2
+

B
√

AC|Ω|1/2

|Ω′|1/2
.

(iii) Let u∈C1(Ω,Rd). Then

‖u‖H1(Ω)≤‖u‖L2(Ω)+‖∇su‖L2(Ω)+

∥∥∥∥−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

+

∥∥∥∥∇au−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

,

which combined with the previous inequality yields

‖u‖H1(Ω)≤‖u‖L2(Ω)+‖∇su‖L2(Ω)+α‖∇su‖L2(Ω)+β‖u‖L2(Ω)

+

∥∥∥∥∇au−−
∫

Ω′
∇au dx

∥∥∥∥
L2(Ω)

.

Furthermore, using inequality (3.2) established in Section 3 to estimate the last

term of the right-hand side above, we have

‖u‖H1(Ω)≤
(

1+α+4K
√

d
|Ω|1/2

|Ω′|1/2

)
‖∇su‖L2(Ω)+(1+β)‖u‖L2(Ω). (5.23)

Remember that Ω′ :=Θ(Ωr′), where r′∈ [R/2,R] and ΩR :=BR,h is a cylinder

with radius R and height 2h such that Θ(ΩR)⊂Ω, and ΣR is the lateral face of the
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cylinder ΩR. Then |ΩR|=Rd−1|Ω1| and |ΣR|=((d−1)/R)|ΩR |, so that

|Ω′|= |Θ(Ωr′)|=
∫

Ωr′

√
gdy≤E|Ωr′ |≤E|ΩR|,

|Ω′|= |Θ(Ωr′)|=
∫

Ωr′

√
gdy≥ |Ωr′ |

D
≥ |ΩR/2|

D
=

|ΩR|
2d−1D

,

and

|Σr′ |
|Ω′|1/2|ΩR\ΩR/2|1/2

≤ |ΣR|
|ΩR|

(
2d−1D

1−2d−1

)1/2

≤ (d−1)
√

2dD

R
.

Consequently, the coefficients of inequality (5.23) are bounded above by

1+α+4K
√

d
|Ω|1/2

|Ω′|1/2
=1+(AB+4K

√
d)

|Ω|1/2

|Θ(ΩR)|1/2
=: C3(Ω,Θ,BR,h),

1+β=1+

(
B
√

2AE|Σr′ |
|Ω′|1/2|ΩR\ΩR/2|1/2

+B
√

AC

)
|Ω|1/2

|Ω′|1/2

≤1+B
(
(d−1)

√
2d+1ADE

1

R
+
√

AC
) |Ω|1/2

|Θ(ΩR)|1/2
=: C4(Ω,Θ,BR,h),

so that we finally have

‖u‖H1(Ω)≤C3(Ω,Θ,BR,h)‖u‖L2(Ω)+C4(Ω,Θ,BR,h)‖∇su‖L2(Ω).

Note that the constants in the right-hand side are independent of the radius

r′= r′(u) used in the proof, so the inequality holds for all u∈C1(Ω;Rd).

Since Ω is a domain (the definition of a domain is given in Section 2) by the as-

sumptions of the theorem, so in particular its boundary is Lipschitz-continuous,

the set C1(Ω;Rd) is dense in the Sobolev space H1(Ω;Rd). Thus, the inequality

‖u‖H1(Ω)≤C3(Ω,Θ,BR,h)‖u‖L2(Ω)+C4(Ω,Θ,BR,h)‖∇su‖L2(Ω)

holds for all vector fields u ∈ H1(Ω;Rd). This is precisely inequality (5.17) an-

nounced in the statement of the theorem.

This inequality implies in particular that, for all u∈H1(Ω;Rd),

‖u‖H1(Ω)≤
(

1+C(Θ,d)[1+R−1+K]
|Ω|1/2

|Θ(BR,h)|1/2

)
(
‖u‖L2(Ω)+‖∇su‖L2(Ω)

)
,

where C(Θ,d) is a constant depending only on the dimension d and on the map-

ping Θ : BR0,h0
→Rd. The proof is complete.
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6 Concluding remarks

Given any bounded and connected open subset Ω of Rd with a Lipschitz-conti-
nuous boundary, and any non-empty relatively open subset Γ0 of the boundary
of Ω, we showed how the inequalities

inf
r∈Rig(Ω)

‖u−r‖H1(Ω)≤C1‖∇su‖L2(Ω), ∀u∈H1(Ω;Rd),

‖u‖H1(Ω)≤C2‖∇su‖L2(Ω), ∀u∈H1(Ω;Rd) that vanish on Γ0,

‖u‖H1(Ω)≤C3‖∇su‖L2(Ω)+C4‖u‖L2(Ω), ∀u∈H1(Ω;Rd)

(which coincide with inequalities (1.1)-(1.3) stated in the introduction) can be de-
rived from the existence of a linear and continuous inverse for the divergence
operator div : H1

0(Ω;Rd)→L2
0(Ω), and we established estimates for the constants

appearing in these inequalities that are sharper than those available in the litera-
ture, at least in the case of thin domains. More specifically, the constants appear-
ing in these inequalities are given by

C1=
(
1+2d1/2K

)
(1+W),

C2=
(
1+2d1/2K

)
(1+P)

(
1+T(1+W)

(
d|Ω|

p1+p2

)1/2
)

,

C3=1+(AB+4K
√

d)
|Ω|1/2

|Θ(BR,h)|1/2
,

C4=1+A1/2B

(
C1/2+2(d+1)/2(d−1)D1/2E1/2 1

R

) |Ω|1/2

|Θ(BR,h)|1/2

in terms of the following parameters associated with the set Ω, and also with Γ0

in the case of C2. Note that the parameters of interest for asymptotic problems are
K, R and h, since they would give the order of magnitude of these constants (the
other ones being either independent of Ω and Γ0, or of lower order of magnitude).

K=K(Ω) is a constant such that (see Lemma 3.1), for all f ∈L2
0(Ω), there exists

v∈H1
0(Ω;Rd) such that

divv= f in L2(Ω), ‖∇v‖L2(Ω)≤K‖ f‖L2(Ω);

W=W(Ω) is a constant such that (see Lemma 3.2), for all f ∈H1(Ω),
∥∥∥∥ f −−

∫

Ω
f

∥∥∥∥
L2(Ω)

≤W‖∇ f‖L2(Ω);
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P=P(Ω,Γ0) is a constant such that (see Lemma 4.1), for all f ∈H1
Γ0
(Ω),

‖ f‖L2(Ω)≤P‖∇ f‖L2(Ω);

T=T(Ω,Γ0) is a constant such that (see Lemma 4.2), for all f ∈H1(Ω),

‖ f‖L2(Γ0)
≤T‖ f‖H1(Ω);

p1=p1(Ω,Γ0) and p2=p2(Ω,Γ0) are the two smallest eigenvalues of the matrix

∫

Γ0

(
x−−

∫

Γ0

x dΓ0

)(
x−−

∫

Γ0

x dΓ0

)T

dΓ0;

BR,h := {(y,z) ∈ Rd−1×R; |y| < R, |z| < h} and Θ ∈ C2(BR0,h0
;Rd) are respec-

tively any given cylinder and embedding that satisfy 0< R≤ R0 ,0< h≤ h0 , and
Θ(BR0,h0

)⊂Ω;
A, B,C, D and E are constants such that, for all y∈BR0 ,h0

,

|∇Θ(y)|2 ≤A,

|(∇Θ)−1(y)|2 ≤B,

d

∑
i 6=j=1

∣∣∇Θ
−1(y)∂ijΘ(y)

∣∣2≤C,

D−1≤|det∇Θ(y)|≤E.

Note that R= R0 and h= h0 is optimal, but it is convenient to distinguish them
so that the constants A,B,C,D and E be independent of R and h. This is useful
in asymptotic problems with respect to the domain Ω, when R or h would go to
zero or to infinity.
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