
Commun. Comput. Phys.
doi: 10.4208/cicp.010415.110915a

Vol. 19, No. 3, pp. 770-800
March 2016

Efficient Implementation of Smoothed Particle

Hydrodynamics (SPH) with Plane Sweep Algorithm

Dong Wang1, Yisong Zhou2 and Sihong Shao2,∗

1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan
University, Shanghai 201203, China.
2 LMAM and School of Mathematical Sciences, Peking University, Beijing 100871,
China.

Received 1 April 2015; Accepted (in revised version) 11 September 2015

Abstract. Neighbour search (NS) is the core of any implementations of smoothed par-
ticle hydrodynamics (SPH). In this paper, we present an efficientO(N logN) neighbour
search method based on the plane sweep (PW) algorithm with N being the number of
SPH particles. The resulting method, dubbed the PWNS method, is totally indepen-
dent of grids (i.e., purely meshfree) and capable of treating variable smoothing length,
arbitrary particle distribution and heterogenous kernels. Several state-of-the-art data
structures and algorithms, e.g., the segment tree and the Morton code, are optimized
and implemented. By simply allowing multiple lines to sweep the SPH particles simul-
taneously from different initial positions, a parallelization of the PWNS method with
satisfactory speedup and load-balancing can be easily achieved. That is, the PWNS
SPH solver has a great potential for large scale fluid dynamics simulations.

AMS subject classifications: 76M28, 74F10, 35Q30, 68W05, 65D18

Key words: Smoothed particle hydrodynamics, meshfree method, neighbour search, plane sweep
algorithm, Morton code, segment tree, quadtree, parallelization, dam break.

1 Introduction

Smoothed particle hydrodynamics (SPH) is a fully meshfree Lagrangian computational
fluid dynamics (CFD) method developed independently by Lucy [1], Gingold and Mon-
aghan [2] in 1977 for astrophysical studies. Due to its robustness in dealing with com-
plex physical problems [3–9], SPH has since been successfully utilized to a large range of
fields, such as ocean engineering [10], casting processes [11], semiconductor manufactur-
ing [12] and so on. In SPH, the system is represented by discrete particles carrying their

∗Corresponding author. Email addresses: wangdong11@fudan.edu.cn (D. Wang), failed.zys@gmail.com (Y.
Zhou), sihong@math.pku.edu.cn (S. Shao)

http://www.global-sci.com/ 770 c©2016 Global-Science Press

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 771

own physical quantities. The quantity of each particle is interpolated from its neighbour-
ing particles through a kernel function with compact support. Thus, efficient searching of
particle neighbours is crucial for SPH performance. On account of the compact support
property of the kernel function, only neighbour particles within its support domain are
involved in calculating the force acting on a given particle. This significantly reduces the
computing cost and serves as the start point of dozens of efficient neighbour search al-
gorithms adopted in any SPH implementations over theO(N2) direct traversing method
(N is the number of SPH particles). An early survey of neighbour search algorithms was
given in [13] and a collection of improved ones have been later proposed by the SPH
community, including the grid-link-list method [14, 15], the hierarchical tree structured
methods [16, 17], the Hilbert-curve decomposition method [18, 19], the Z-order curve in-
dexing method [20], the spatial hashing method [21, 22] and the adaptive-resolution cell
lists method [23]. Among them, both the grid-link-list method and the hierarchical tree
structured methods are much more popular.

In the grid-link-list method, the complexity of which is O(N logN) [14, 15], the entire
domain is first divided into uniform grids sized in the radius of the support domain and
then the neighbours of a given particle are searched only within its home and adjacent
grids. This method is preferred in incompressible or weakly-compressible fluid problems
for the smoothing length is often constant or varies in a small range. However, the grid-
link-list method is not purely “mesh-free” for the search procedure highly depends on the
grids. When the system consists of sparsely distributed particles (e.g., often encountered
in adaptive particle refinement/derefinement [24,25]) or involves a large variation of the
support domain, a great many grids may contain no particles, leading to an inefficient
use of memory, and then the grid-link-list method is no longer suitable.

Another widely accepted idea for neighbour search comes from hierarchical tree struc-
tures and has been applied to SPH by many researchers using different algorithms. Hern-
quist et al. [16] incorporated the Barnes-Hut algorithm [26] into SPH calculation, where
an octree is built hierarchically by dividing the entire domain into small cells and each
particle is represented by a leaf node, and then the neighbour search is performed by
descending from the top of the tree with a search cube checking whether a node is within
the neighbouring area. Benz et al. [17] used a bottom-up tree structure, where the mu-
tual neighbouring particles and tree nodes are organized in higher-level aggregate nodes
recursively in a bottom-up hierarchy, and then a binary tree with neighbouring particles
grouped together is built. These two tree methods are favoured in the astrophysics com-
munity for the ease of computing long-range gravitational forces, the mesh-less property
and the flexibility for variational smoothing length. Although the complexity of these
tree-based methods is reported to be O(N logN) [16], it is shown that the logarithmic
term can deteriorate into O(dN1−1/d) with d being the spatial dimension [27]. More-
over, parallelizing these tree-based methods is not an easy task and sometimes requires
a redesign of the original algorithm [28].

The neighbour search in SPH is closely connected with the properties of smoothing
kernels. Under most circumstances, the first choice of SPH community is the isotropic

772 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

smoothing kernel, of which the shape is usually a circle in 2D (sphere in 3D) with the ra-
dius rc=κh, where κ is the kernel-dominant factor and h is the smoothing length. Nearly
all the neighbour search methods are developed for the isotropic kernels. Despite its
broad application, it is reported by Yu et al. [29] that an anisotropic kernel with an el-
liptic shape leads to better results than the isotropic kernel in computer graphics field.
However, much to the authors’ knowledge, there is no such neighbour search method
adaptable to both isotropic and anisotropic kernels. Instead, a neighbour search method
for isotropic kernels is used in [29], where the ellipsoidal support domains are covered
by uniform grid cells and extra work is needed to filter the particles outside the support
domain.

In order to treat the variable smoothing length, the arbitrary particle distribution and
the heterogenous kernels as well as to provide effortless parallelization, in this study we
propose an O(N logN) neighbour search (NS) method based on the plane sweep (PW)
algorithm [30]. This algorithm has been successfully applied in a large range of com-
putational geometry problems, such as the VLSI design automation [31] and geographic
information systems [32], but rarely used to solve CFD problems. In the resulting neigh-
bour search method, dubbed the PWNS method, neighbour search is performed by a line
sweeping over all the SPH particles. That is, no gird is needed any more, i.e., the PWNS
method is purely “meshfree”, which offers great flexibility to process variable smoothing
length and irregular support domain in SPH. Moreover, the raw coordinates of particles
are mapped into integer indices without losing their localities and those data structures
and algorithms well tuned for integers can be adopted. Also with the help of integer in-
dices, spatial coordinates can be further mapped to the Morton code [33], which provides
a more efficient 3D implementation (vide post). Meanwhile, the particle set can be easily
divided into several balanced subsets only according to the integer indices. That is, the
PWNS method is naturally appropriate for parallelization by sweeping these balanced
subsets simultaneously. All of these properties give the PWNS method competitive ad-
vantages over other existing neighbour search methods.

The rest of the paper is organized as follows. In Section 2, basic formulation of SPH
is introduced. Section 3 is devoted into describing the PWNS method with details and
corresponding parallel implementations can be found in Section 4. Numerical experi-
ments with discussions are presented in Section 5 for demonstrating the performance of
the PWNS method. The paper is concluded in Section 6 with a few remarks.

2 Basic formulation of SPH

The basic principle of SPH is that any function A(r) can be expressed by an integral over
the entire domain Ω as

A(r)=
∫

Ω
A(r′)δ(r−r′)dr′, (2.1)

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 773

where r and r′ are the position vectors, δ(r−r′) is the Dirac delta function. Replacing the
Dirac delta function by a weight function W(r−r′ ,h), we have the typical interpolation
formula as

〈A(r)〉=
∫

Ω
A(r′)W(r−r′ ,h)dr′ , (2.2)

where 〈A(r)〉 is used to represent the SPH interpolation in the sense that

lim
h→0

W(r−r′ ,h)=δ(r−r′), (2.3)

subject to the normalization condition

∫

Ω
W(r−r′ ,h)dr′=1. (2.4)

Here the weight function W(r−r′,h) is usually named as the smoothing kernel with h
being the smoothing length. Given that for hydrodynamical quantities long-range forces
are usually negligible, we often employ an isotropic smoothing kernels with compact
support in practice, i.e., requiring

W(r−r′ ,h)=0 when |r−r′ |>κh, (2.5)

where κ is a constant related to the smoothing kernel, and defines the support domain
(with the radius rc = κh) of the particle at r, namely the non-zero area of the smoothing
kernel. The isotropic kernel can be written as

W(r−r′ ,h)=
σ

hd
f
(|r|

h

)

, (2.6)

where σ is the normalization factor, d is the spatial dimension, f (|r|h) is usually a symmet-
ric spline with compact support. Recently, Yu et al. [29] proposed an anisotropic kernel
as

W(r,G)=σdet(G) f (‖Gr‖), (2.7)

where h in Eq. (2.6) is replaced by a d×d real positive definite matrix G.

Based on the Lagrangian specification of the flow field, the SPH method approximates
the solutions of the equation of fluid dynamics by replacing the fluid with a set of par-
ticles moving with the flow and evaluates hydrodynamical properties of any particle by
calculating the smoothing kernel interpolation of the values from other particles. Let us
consider a set of N SPH particles such that particle i (1≤ i≤N) has mass mi, density ρi

and position ri, we have the particle approximation of Eq. (2.2) as

Ai=∑
j

AjWijVj, (2.8)

774 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

where i and j denote SPH particles, Wij =W(ri−rj,h), Vj is the volume of particle j. On
account of the compact support of the smoothing kernel, the summations in Eq. (2.8) can
be reduced from over all the particles to only the neighbouring particles contained in the
support domain of the particle i. This will greatly increase the efficiency of SPH if all the
neighbours of a given particle can be efficiently collected. To this end, we will present
and implement a fast neighbour search method base on a plane sweep algorithm.

3 Plane sweep neighbour search (PWNS)

A compact support domain in SPH is usually a local subregion of the entire domain.
The most commonly used support domain is in the shape of circle (2D) or sphere (3D)
with the radius rc = κh. For generality, as mentioned in Section 1, the compact support
domain may also have a shape of ellipse [29], square or rectangular. Usually, the SPH
particle stands at the centre of its support domain. In this work, since the plane sweep
algorithm works in orthogonal systems, the circular (or elliptical) support domain can
be transformed to a slightly larger rectangular one, i.e., the circumscribed rectangle, as
shown in Fig. 1. As implied by its name, the plane sweep algorithm sweeps all the SPH
particles along a specified direction with a sweep line. During the sweep, the line stops
at every event point to obtain useful information and make necessary operations. No
backtracking is needed and the sweep will only be performed once.

Figure 1: A 2D sketch of support domains (shadow area) with different shapes for different particles (red).
For any circular or elliptical support domain, the search for the neighbours is carried out in a slightly larger
circumscribed rectangle as the PWNS algorithm prefers a rectangular support domain.

To demonstrate the PWNS method, we take a 2D system as example. The positive
direction of the x-axis is chosen as the sweep direction. The x-coordinate of particle i is
denoted by xi, the size of the rectangular support domain for particle i is characterized
by the vector ri = (ai,bi) with ai, bi being the half length of the edge in x-direction, y-
direction respectively. The values of ai, bi can be set freely to wrap any size and any
shape of support domains (see Fig. 1). That is, the variable smoothing length is naturally
supported. Meanwhile, both isotropic and anisotropic kernels are fully covered in the

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 775

y

x

p

Figure 2: A diagram of the 2D PWNS method. The red line sweeps from the leftmost particle to the rightmost
one. All the particles before the sweep line have been inserted into the container. For a given particle p (red),

only those particles (yellow) standing inside the vertical projection (green zone) and inserted between elimit
p and

e
query
p (purple zone) are regarded as its neighbours.

PWNS method. The left (resp. right) boundary of the support domain of particle i is
xi−ai (resp. xi+ai). We put xi−ai, xi and xi+ai for all 1≤ i≤N together, sort them in
ascending order and finally obtain an event queue {ek | 1≤ k≤ 3N}. All events in {ek}
can be classified into three categories according to their locations in support domains:
elimit for left boundaries like xi−ai, einsert for particle positions like xi and equery for right
boundaries like xi+ai. Those events of different types but sharing identical coordinate are
arranged in the following specified order: elimit

< einsert
< equery. For a given particle i, the

related three events are marked respectively as elimit
i , einsert

i and e
query
i . In consequence,

the x-axis in space is transformed into the time domain. Then the neighbour search is
performed with the line touching each event chronologically. In order to record what
happens during the sweep, a container T representing the remaining spatial dimension
should be constructed. The procedure of the PWNS method is presented as follows:

1. All the SPH particles with their insert events touched by the sweep line are inserted
into the container T .

2. When the line touches e
query
i , all the particles in the container will be checked and

only those particles both located inside the projection of the support domain in
y-axis and inserted between elimit

i and e
query
i will be chosen as the neighbours of

particle i.

A diagram of the 2D PWNS procedure is shown in Fig. 2 and the skeleton is described
in Algorithm 1. As shown in Algorithm 1, a “smart” container is of great importance

776 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

Algorithm 1: The skeleton of the PWNS method for SPH.

Input : The number of SPH particles N, the particle set {i |16 i6N}
Output: The neighbour list of each particle

1 Merge all the elements in {xi−ai |16 i6N}, {xi |16 i6N}, {xi+ai |16 i6N}
together and sort them in ascending order to obtain the event queue
{ek |16k63N};

2 Initialize T ;
3 for k=1,2,.. . ,3N do

4 if ek = einsert
i then

5 Insert i into T ;
6 end if

7 if ek = e
query
i then

8 Query all the neighbours of i inside T ;
9 end if

10 end for

to the efficiency of the PWNS method. More specifically, such container should provide
fast implementation of the following operations: one is the insertion of a particle into the
container, the other is the query of all the neighbours of a particle inside the container. In
the following, we will detail how to construct the container T as well as how to perform
those insert and query operations efficiently in T .

3.1 2D implementation

In the plane sweep algorithm, the x-axis is converted into the time domain. The dimen-
sion of the container is one less than that of the entire system, i.e., a 1D container T is
needed for 2D implementation. For constructing T , there are numerous candidates in
the literature and most of them have tree structure such as the segment tree, the interval
tree and the priority search tree etc. In this work, we choose the segment tree due to its
highly efficient performance of insert and query operations for continuous integer data.
The segment tree is a kind of balanced binary tree used to store segments [34]. The root
of a segment tree is usually constructed by giving it an segment representing the entire
domain. Then the children get their segments by dividing the parent’s segment from the
middle and a node is regarded as a leaf node if its segment cannot be divided any more. A
simple implementation of segment tree is shown in Fig. 3. In the PWNS method, the root
node of T is used to represent the entire range of particle coordinates and the particles
are stored in the leaf nodes. T is constructed in keeping with y-coordinates of particles,
i.e., the location of each particle in the tree is only determined by its y-coordinate. The
insert operation can be implemented as shown in Algorithm 2. In order to obtain all the
neighbours of particle i, one needs to traverse T from the root in a top-down manner

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 777

[1, 9]

[1, 5] [6, 9]

[1, 3] [4, 5] [6, 7] [8, 9]

[1, 2] 3 4 5 6 7 8 9

1 2

Figure 3: A 1D segment tree representing the segment [1,9]. The two children of a given node [a,b], where a

and b are integers, are defined as [a,⌊ a+b
2 ⌋] and [⌊ a+b

2 ⌋+1,b]. Note that the floor function is used to determine
the boundary of the child node.

Algorithm 2: The 2D insert algorithm.

Input : The container tree T , particle i, index k of einsert
i

1 Function INSERT(T ,i,k)
2 ν← the root node of T ;

/* Optimization discussed in Section 3.2 */

3 t
penult
ν ← tlast

ν ;

4 tlast
ν ← k;

5 if R is not leaf then

6 if yi locates in the left part of ν then

7 INSERT(T left,i,k); // T left: the left subtree of ν

8 else

9 INSERT(T right,i,k); // T right: the right subtree of ν

10 end if

11 else

12 Insert i into ν;
13 end if

14 end

according to the following two criteria as already shown in Fig. 2:

• Vertical Criterion (VC): Only those nodes with their segments overlapping the verti-
cal projection of the support domain [yi−bi,yi+bi] are traversed and the valid leaf
nodes in [yi−bi,yi+bi] should be chosen.

• Horizontal Criterion (HC): Only the particles stored in valid leaf nodes with einsert

greater than elimit
i are selected as the neighbours of particle i.

778 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

Algorithm 3: The 2D query algorithm.

Input : The container tree T , particle i, index k of elimit
i

Output: The neighbour list of i
1 Function QUERY(T ,i,k)
2 ν← the root node of T ;

3 if tlast
ν >k then

4 if ν is leaf then

5 foreach particle j in ν do

6 t← the index of einsert
j ;

7 if t>k then

8 Add j to the neighbour list of i;
9 end if

10 end foreach

11 end if

/* Optimization discussed in Section 3.2 */

12 if t
penult
ν < k then

13 QUERY(T leaf,i,k); // T leaf: the only leaf meets HC
14 end if

15 s← the support domain of i;
16 if s intersects with the left part of ν then

17 QUERY(T left,i,k);
18 end if

19 if s intersects with the right part of ν then

20 QUERY(T right,i,k);
21 end if

22 end if

23 end

The algorithm of the query operation is given in Algorithm 3. It should be noted that the
underlined operations in Algorithms 2 and 3 are optimization techniques which will be
described in Section 3.2.

3.2 Optimization techniques

As mentioned above, there are two criteria, i.e., VC and HC, for eliminating unqualified
candidates in the container T during the query process. However, it will be inefficient if
only these basic criteria are implemented. Since the structure of the segment tree is prede-
fined and only depends on y-coordinates, the leaves in [yi−bi,yi+bi] will actually cover
the entire x-domain [xmin,xmax] (see Fig. 4). But in practice, the support domain of a SPH
particle is very small compared with the entire domain, i.e., 2ai≪ xmax−xmin. Therefore,

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 779

Query window

(compact)

x

y

Container

i

(xmin, yi-bi (xi-ai, yi-bi

(xi+ai, yi+bi

Query window

(incompact)

2bi

2ai

xmax-xmin

(xmax, yi+bi

Figure 4: Comparison of the compact query window (support domain) with the incompact query window. If the
incompact query window is adopted, those particles (grey) located outside [xi−ai,xi+ai] will also be visited,
leading to a significant increase of query time.

if the query window is not compact, most of the visited leaves satisfying VC may not
meet HC, which significantly increases the computing cost. To avoid these unnecessary
traversals, several optimization techniques below are adopted.

3.2.1 Horizontal criterion (HC) combined traversal

The query operation should be combined with checking HC when visiting any node in
the container T . This is done by adding a time flag tlast to each node of T . For a given
node ν, tlast

ν records the time of the last insertion via ν. If a particle is inserted at the time
k, the flags of all nodes on the path from the root to the leaf will be marked with k (see
Fig. 5). That is, tlast

ν =k simply indicates that all the particles in the subtree Tν are inserted
either before or at the time k. Therefore, one should examine the flag tlast

ν before checking
the intersection between the support domain and the node ν. If tlast

ν is smaller than elimit,
which means no particle in the subtree Tν satisfies HC, then Tν can be bypassed.

The basic HC combined optimization limits the query traversal to the qualified leaves.
Compared with all the leaves in the entire query range, the number of these qualified
leaves are quite small. Usually, there is only one leaf λ satisfying HC in a certain subtree
Tν. If both the root ν of such subtree Tν and the particular path from ν to λ in Tν are
determined, then we can jump straightforwardly from ν to λ, i.e., there is no need to
visit those midway nodes. To this end, we introduce to each node an additional time flag
tpenult which records the time of the penultimate insertion. Then it can be easily checked

that the conditions tlast
ν > elimit and t

penult
ν < elimit together implies that there is only one

leaf λ in Tν satisfying both HC and tlast
λ = tlast

ν . Generally, selecting λ from all the leaves of
Tν is not an easy task. Fortunately, when inserting a particle to its position (leaf), we can
record the path from the top root to the target leaf at the same time (see Fig. 5). Since ν is
on this path, the position of λ is known to ν and then the expected jump can be readily
completed. Fig. 6 shows a cartoon of the range query operation for valid leaves. There we
can see clearly that, with the help of the HC combined traversal, all of the unnecessary
traversals during the query can be completely avoided.

780 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

k

k k - 2

k - 1 k k - 2

k-1 k k+1k-2 k+21 3N

Event queue

Sweep line

Particle

queue

tlast: k

tpenult: k-1

tlast: k

tpenult: k-1

tlast: k-2

tpenult: -1

tlast: k-1

tpenult: k-p

tlast: k

tpenult: k-q

tlast: k-2

tpenult: -1

tlast: -1

tpenult: -1

Figure 5: Insertion of a particle at event ek into the tree. The initial state of the time flag for any node is
−1. During the insertion, the flags of all the nodes along the path from the root to the leaf are marked with
k. Meanwhile, the penultimate time flag will also be updated. If the particle queue of the current leaf is not
empty, the new particle will be added to the tail of the queue.

y1 y2

root

A B C D E F

(a)

y1 y2

root

A B C D E F

(b)

y1 y2

root

A B C D E F

(c)

Figure 6: The range query operation for valid leaves A, B, C, D, E and F in [y1,y2]. (a) Range query without
any optimization: the entire subtree between y1 and y2 will be traversed; (b) HC-combined traversal without
jump: only those branches to valid leaves will be traversed; (c) HC-combined traversal with jump: If there are
only one leaf satisfying HC in a subtree, we can jump from the root of this subtree to the target leaf.

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 781

3.2.2 Indexing particles

Another optimization is for efficient implementation of the data structure. On one hand,
it has been known that computers process floats more slowly than integers. On the other
hand, both the plane sweep algorithm and the operations on the segment tree function
efficiently with integers. Thus we usually map the coordinates of particles and support
domains into integer indices while preserving the localities. This map can be achieved
by the following steps:

1. In each dimension, sort the particle coordinates in ascending order and mark them
by sequential indices 1,2,3··· ,M. Those identical coordinates are represented by the
same integer, which makes M6N.

2. Using the particle coordinates as keys, assign each coordinate of the support do-
main with the index of its closest key.

The resulting integer index set is a surjection of the particle set and then the segment tree
constructed from the index set will not have any empty leaves (i.e., leaves containing no
SPH particles) which also results in a save of memory. Actually, such indexing procedure
can be regarded as a specified ranked list technique and the interested readers are referred
to [35, 36] for more discussions on other ranked list techniques.

3.3 3D implementation

Intuitively, we have at least two way to implement the 3D PWNS method. One is using
a plane parallel to the yz-plane to sweep the entire domain along the x-axis and make
window queries on the yz-plane, as shown in Fig. 7. We denote this kind of implementa-
tion by PWNS1+2, meaning we perform the sweep on ONE dimension and make range
queries on the remaining TWO dimensions. The other one is performing the sweep pro-
cedure with a line perpendicular to the xy-plane along a certain path on the xy-plane and
doing range queries on an 1D container in the z-axis like we have done for 2D systems.
Similarly, we denote this method by PWNS2+1.

Actually, PWNS1+2 is a straightforward extension of the 2D PWNS method into 3D
systems. This extension can be implemented without major modifications to Algorithm 1.
A slight difference is that we now need a 2D container which should support efficient
insert and window query operations in the yz-plane. Usually, any type of spatial parti-
tioning tree fits the job, such as the quadtree [37], the k-d tree [38] etc. In our study, two
types of containers, the quadtree and the BUBtree [39], are chosen. The BUBtree is a vari-
ant of the UBtree [40], i.e., a combination of both B-tree [41] and the Z-order curve, which
has been adopted in many commercial databases. Note in passing that the optimization
techniques discussed in Section 3.2 can also be applied to these data structures. However,
the complexity of the window query on these 2D containers cannot be guaranteed to be
logarithmic [27].

782 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

Time

y

z

t0

t1

t2

t3

...

Figure 7: The quad-tree partitioning of the yz-plane with particles inserted chronologically. The red, blue,
green, purple particles are inserted into the tree at t0, t1, t2, t3 respectively. The domain is subdivided until
each leaf of the quad tree contains at most a single particle.

While in PWNS2+1, the query operations can work in a logarithmic manner due to
the 1D container (e.g., the segment tree). To perform the sweep along a certain path on
the xy-plane, we employ the Morton code [33] to map the coordinates of particles in the
xy-plane to 1D indices. As illustrated in Fig. 8, the Morton code is a 1D representation

0000 0001 0010 0011 01100100 0101 0111

0000

0001

0010

0011

0100

0101

0110

0111

0 1

2 3

4 5

6 7

16 17

18 19

20 21

22 23

8 9

10 11

12 13

14 15

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

48 49

50 51

52 53

54 55

40 41

42 43

44 45

46 47

56 57

58 59

60 61

62 63

00000000 00000001 00000100 00000101 00010000 00010001 00010100 00010101

00000010 00000011 00000110 00000111 00010010 00010011 00010110 00010111

00001000 00001001 00001100 00001101 00011000 00011001 00011100 00011101

00001010 00001011 00001110 00001111 00011010 00011011 00011110 00011111

00100000 00100001 00100100 00100101 00110000 00110001 00110100 00110101

00100010 00100011 00100110 00100111 00110010 00110011 00110110 00110111

00101000 00101001 00101100 00101101 00111000 00111001 00111100 00111101

00101010 00101011 00101110 00101111 00111010 00111011 00111110 00111111

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Figure 8: The Morton code map for particles with integer indices from 0 to 7.

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 783

i

(a)

i

(b)

Figure 9: Comparison of Si without decomposition and with BIGMIN decomposition. (a) Without decomposi-
tion: Plenty of particles (in the shadow area) outside the projection of the support domain (blue) are also cover
by Si; (b) With BIGMIN decomposition: The resulting subsegments (after a depth-5 decomposition) with green
(resp. red) arrow representing MBIGMIN (resp. MLITMAX) only cover those particles inside the projection of
the support domain.

of 2D data by interleaving the binary values of coordinates in each dimension. Connect-
ing all the codes leads to the well known Z-order curve. An important property of the
Z-order curve is that although the points on the curve are mapped into 1D indices, their
localities are well preserved. The distances between a given particle and its neighbours
are then close on the curve. Another crucial feature is that the order of the Morton code
implicitly reflects the sequence of traversing quadtree leaves. Given two particles i and
j whose Morton code are respectivelyMi andMj,Mi <Mj simply means we have at
least xi < xj or yi < yj. Accordingly, any particle k in the support domain bounded by
(xmin,ymin) and (xmax,ymax) will definitely locate betweenMmin andMmax on the curve.
Then we can project the support domain of particle i to the xy-plane and perform the
plane sweep along the Z-order curve segment Si = [Mα,Mβ], where the index α (resp.
β) corresponds to the point (xi−ai,yi−bi) (resp. (xi+ai,yi+bi)). Those particles located
inside the support domain will be visited during the sweep on Si. Correspondingly, the
events become elimit

i =Mα, einsert
i =Mi and e

query
i =Mβ. Note in passing that, the seg-

ment tree and all related optimization techniques adopted for the 2D PWNS method can
still be used in PWNS2+1. Since the query range is considerably small compared with
the size of the segment tree, a logarithmic complexity for query operations can be guar-
anteed. However, the Morton code only preserves the information of particle position
“locally”. If the projection of the support domain of particle i spans many local areas and
grows “global”, the region covered by Si may become far larger than the projection, as
illustrated in Fig. 9(a). We can see clearly there that the majority of particles withM in
[Mα,Mβ] are actually outside the support domain and will be queried when the query

784 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

event is touched by the sweep line from Algorithm 1. Even worse, these particles com-
pletely satisfy VC and HC and will be added to the neighbour lists. Once the number of
these particles becomes too large, the cost of query operations in the container will also
grow considerably. To solve this problem, the BIGMIN method [42] is adopted to decom-
pose the puffy Si into “local” subsegments without sweep line walking cross the border
of the support domain. After the decomposition, the original puffy Si is divided into
many subsegments (shown in Fig. 9(b)), each subsegment with a MBIGMIN being elimit

and aMLITMAX being equery, whereMBIGMIN (resp. MLITMAX) denotes the point where
the curve walks into (resp. outside) the support domain. By performing the sweep pro-
cedure on these subsegments, we have the skeleton of our 3D PWNS method shown in
Algorithm 4.

Algorithm 4: The PWNS2+1 algorithm.

Input : The number of SPH particles N, the particle set {i |16 i6N}
Output: The neighbour list of each particle

1 Generate Morton codes for (xi,yi), (xi−ai,yi−bi) and (xi+ai,yi+bi), i=1,2,··· ,3N;
2 for i=1,2,··· ,N do

3 Divide [Mα,Mβ] into subsegments by the BIGMIN method;

4 Add all resultingMBIGMIN andMLITMAX to the event set E;

5 end for

6 Sort all the events in E;
7 Initialize T ;
8 foreach event ek in E do
9 if ek = einsert

i then

10 Insert i into T ;
11 end if

12 if ek = e
query
i then

13 Query all the neighbours of i inside T ;
14 end if

15 end foreach

As shown in Algorithm 4, some pre-operations, i.e., the Morton code generation and
the Z-order curve decomposition, must be conducted in PWNS2+1. The Morton code gen-
eration can be finished by a fast look-up table (LUT) method with only marginal costs for
the coordinates of particles have already been mapped into integer indices. The situa-
tion for the BIGMIN decomposition is a bit more complicated. Since the Morton code
is a N2 mesh-like representation of the 2D domain with only N particles in the domain,
the distribution of the particles is considerably sparse. Hence, if the resulting Z-order
curve subsegments become too small, there may exist a large number of subsegments
covering no particles, leading to a significant increase in the runtime of event sorting and
sweeping. Note that dividing any Si by the BIGMIN method is in fact a binary space

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 785

partitioning, and we find that the decomposition depth of 4 or 5 is enough for most cases
(see Appendix A for more details).

3.4 Complexity analysis

The time complexity is usually the major concern when we evaluate an algorithm. In this
section, the complexity of the PWNS method will be studied, provided that there are N
particles in total. As shown in Algorithms 1 and 4, the search procedure can be divided
into two stages: Preparation stage and Sweep stage. We will analyse below the complexity
of these two stages separately.

At the beginning of Preparation stage, the coordinates of all the particles are mapped
into integer indices. Since the indices are obtained from sorted coordinates, the com-
plexity of this procedure can be achieved in O(N logN) by any of the comparison sort
methods, such as the quicksort algorithm [43]. For the 3D case, extra work for the Mor-
ton code generation must be conducted based on these indices. This can be achieved in
O(N) with the LUT method. Afterwards, the event set is obtained. Since each particle
has three basic events, i.e., elimit, einsert and equery, the complexity for constructing events
will be O(3N). For the 3D implementation, extra operations for decomposing the event
ranges will be conducted. The decomposition can be achieved in O(DlogD) with D be-
ing the bit length of the Morton code. Since the depth of decomposition is bounded in
our PWNS method, only part of the bits will be used, which reduces the complexity of
decomposition to a constant level. Thus for all the particles, the decomposition can be
done in O(CBIGMINN) and the constant CBIGMIN < DlogD. To sort the events with in-
teger time flags, an O(N) non-comparison sorting algorithm can be used, such as the
bucket sort and the radix sort [44]. The last step of Preparation stage is constructing the
container tree. Since the structure of the segment tree is known once the integer indices
are obtained, the construction can be done in a bottom-up manner with a cost of O(2N)
(almost equals to 2N). It must be emphasized here that this O(2N) construction protects
the PWNS method from the complex construction and maintenance of a dynamical tree
structure, such as the kd-tree, the R-tree, etc. (the cost for these dynamical trees is usually
O(N logN)), especially when moving a particle in an upper layer, which often requires
updating the entire subtree. As a result, we have the total cost of Preparation stage to be
O(N logN).

In Sweep stage, one needs to perform N insert operations in the container tree. Since
each insert operation will cost O(logN) time, the total cost of all insert operations is
O(N logN). The derivation of the complexity of query operations is slightly more com-
plicated than insert operations. Usually, when performing one range query on a seg-
ment tree, the complexity can be O(logN+K), where K is the number of leaves in the
range. As mentioned in Section 3.2, without optimizations, there may be quite a lot of
“unnecessary” traversals in the PWNS method and K can be far larger than the actual
number of neighbours, leading to a waste of CPU time. However, if those optimizations
are adopted, taking the 2D implementation as an example, for any particle i, K can be

786 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

reduced from 2bi
Ay

N to 2ai
Ax

2bi
Ay

N, where Ax (resp. Ay) are the projecting length of the en-

tire domain in x-axis (resp. y-axis) (See Fig. 4). Since ai is usually far less than Ax, the
proposed optimization techniques can significantly reduce the time costs of query op-
erations. Furthermore, as the number of neighbours of each particle is approximately

constant [9], we have 2ai
Ax

2bi
Ay

N ∼ k, where k is the number of neighbours. Meanwhile,

the traversal on the segment tree can jump from a certain level to the leaf directly. The
skipped depth can be described as log K

k = log Ax
2ai

, where K
k represents the width of query

range per neighbour on the tree and K≫k. Consequently, we have a profound reduction
in the query depth from logN to logN−log K

k = log kN
K and the complexity of query oper-

ations becomesO(N log kN
K +kN). Totaling the complexity terms of both insert and query

operations up, the cost of Sweep stage is also O(N logN).
In summary, the complexity of the PWNS method can be guaranteed to beO(N logN).

In actual simulations, multiple sweeps over the same set of particles are usually unavoid-
able and we are able to make further improvement in these multiple sweeps by virture
of a Verlet list [45]. Actually, by slightly enlarging the support domain of each particle,
one could use the PWNS method to generate a Verlet list and then reduce the complex-
ity of neighbour search in each SPH iteration to O(kN). As a result, the PWNS method
could be performed every dozens of SPH iterations when the Verlet list is required to be
updated, and thus the complexity of the entire SPH simulation is further reduced.

4 Parallel implementation

The CFD problems usually involve large-scale data processing. The capability of dividing
a large problem into small parts and solving them simultaneously is a basic requirement
for modern CFD solvers. Based on the plane sweep algorithm, the parallelization of the
PWNS method is equivalent to sweeping over all the SPH particles synchronously with
multiple lines. Therefore the resulting SPH solver can thoroughly be parallelized.

Taking the 2D case for instance, in the PWNS SPH solver, the x-coordinates of SPH
particles are sorted in ascending order and converted to integer indices, from which a
temporal event queue is constructed. Then a line perpendicular to the x-axis is used
to sweep the entire domain by scanning the chronologically ordered events. Once the
line has passed over all the events, the complete neighbour list is obtained and then the
inter-particle forces can be calculated. Finally, the related physical information of all SPH
particles is updated.

To implement the parallel PWNS method, the particle set is first divided into n sub-
sets based on the indices of particles. Then for each subset, we can construct its own event
queue and perform independent PWNS. Finally, each subset will have its own neighbour
list and the following processes can be conducted within this parallelism framework.
Note that unlike those geometry-dominant parallel algorithms (see Fig. 10(a)), our index-
dominant dividing is practically not restricted by the geometry of the system. Since the
sweep operation only depends on the well ordered index array {1,2,··· ,N}, where N

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 787

(a) Geometry-dominant dividing (b) Index-dominant dividing

Figure 10: Comparison of two dividing methods. (a) Geometry-dominant dividing, where the space is equally
divided while the number of particles in each subset varies; (b) Index-dominant dividing, where the number of
particles in each subset is almost equal, i.e. the computing cost on each node is balanced.

is the number of particles, we can simply divide the particles into n balanced sets as
{{(i−1)N

n +1,(i−1)N
n +2,··· ,i N

n }|i=1,2,···n}without considering the geometrical distri-
bution of SPH particles, as shown in Fig. 10(b). This is yet another demonstration of the
purely meshfree property of the PWNS method. Because the cost of the PWNS method is
dominated by the number of SPH particles, the costs of each subsets are almost the same.
Therefore, load balancing can be easily achieved in our parallel PWNS SPH solver.

While implementing the parallel PWNS method, several efficiency issues should be
remarked below.

1. With the aim of achieving sound load balancing and reducing communication costs
in most computing processes, all the particles in the global set must be sorted be-
fore dividing into subsets. To this end, a parallel sort algorithm based on regular
sampling [46] is adopted here. Although this algorithm requires unavoidable com-
munications between processors, experimental results have shown its encouraging
speedup on present multiprocessor architectures [46].

2. When constructing the event queue, the edges of each support domain are also in-
cluded. In consequence, as illustrated in Fig. 11(a), if the support domain of particle
i in Subset A wraps other particles in Subset B, those particles in Subset B will not
be included in the event queue of Subset A. Thus the plane sweep in Subset A will
not give the neighbours of i in Subset B and leads to an incomplete neighbour list.
To fix this problem, a ghost support domain of particle i is introduced in Subset B
(see Fig. 11(b)) and then the event queue of Subset B will take account of the ghost
domain, i.e., elimit

i and e
query
i will effect during the sweep of Subset B. Finally, the

neighbours of particle i in Subset B can be found and will be added to the neigh-
bour list of Subset A before the force calculation. Compared with the entire system,
the amount of particles with support domain across subsets is almost negligible in
large-scale simulations, thus the communication cost of neighbour transfer between
different subsets is marginal.

3. As discussed in Section 3.4, the query depth can be reduced from logN to log kN
K

once the optimization techniques introduced in Section 3.2.1 are applied. Accord-

788 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

Subset A Subset B

i

support

domain

(a)

Subset A Subset B

i

ghost support

domain
real support

domain

(b)

Figure 11: (a) The support domain of particle i in Subset A wraps other particles in Subset B. (b) A ghost
support domain of particle i is introduced to find the neighbours within Subset B.

ingly, for any p-thread parallel implementation, the resulting query depth is log N ′
p

with N′= kN
K . Since N′ is apparently smaller than N, the descending rate of log N ′

p

will be larger than log N
p as p grows. This will result in a superlinear decrease of the

complexity for the parallel implementation. This phenomenon is especially com-
mon for randomly distributed particles, where the neighbours of a given particle
are more sparsely scattered than uniformly distributed cases.

5 Numerical experiments

In this section, we present several test cases to evaluate the PWNS method which was
implemented in C++ with OpenMP as the parallelization platform. All the cases were
run on a server with 32 processors (2.67GHz Intel Xeon E7-8837).

5.1 Efficiency evaluation

To evaluate the efficiency of the PWNS method, we conducted two groups of experi-
ments with different particle distributions. In the first group, the particles are placed in
a nd uniform Cartesian mesh, where d is the space dimension. Thus the number of parti-
cles N=nd. This type of distribution is popularly used as the initial particle distribution
in SPH simulations. Here the initial particle spacing ∆x=0.01 and the smoothing length
κh= 0.03. A sample 2D distribution with 20×20 particles is shown in Fig. 12(a). In the
second group, the particles are randomly distributed in the same domain (see Fig. 12(b)).
In order to mimic the practical SPH simulations, the smoothing length is allowed to vary
and obeys a uniform distribution U(0.8κh,1.2κh). Eventually, the evaluations of both the

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 789

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a)

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b)

Figure 12: Two types of 2D particle distributions (400 particles). (a) Particles placed uniformly; (b) Particles
placed randomly.

initial and run-time particle distributions are covered. Note that PWNS2+1 is used to eval-
uate the 3D performance here. All the experiments are run on a single processor, which
usually results in an unacceptable time consumption for the brutal O(N2) neighbour
search. Figs. 13 and 14 show the runtime for both direct search and the PWNS method as
the number of particles increases. We can clearly observe there that a notable reduction
in the runtime is achieved by the PWNS method. The time consumption of the PWNS
method for the random case is slightly slower than the uniform cases. This is because
the container tree is constructed from the particle indices. For example, for the 2D case,
the uniform-distribution with N particles yields only

√
N different y-coordinates, i.e., the

container tree only has
√

N leaf nodes. However, for an equal-scale random-distribution,
there would be N y-coordinates, leading to an apparently larger container tree. Fortu-
nately, the worst time complexity of the random case will only be a constant times that of
the uniform case for the cost of query operations in the container tree is O(logN+k).

As mentioned in Section 3.3, there are two ways to implement the 3D PWNS method,
i.e., PWNS2+1 and PWNS1+2. Better performances of PWNS2+1 over the direct search is
clearly shown in Figs. 13(b) and 14(b). To compare the performance of these two ways,
we repeated the same test cases aforementioned with PWNS1+2. Two types of containers,
i.e., the quadtree and the BUBtree, were both tested in PWNS1+2. Fig. 15 shows the per-
formance of PWNS2+1, PWNS1+2 with the quadtree and PWNS1+2 with the BUBtree in
Sweep stage. We can see there that PWNS2+1 works apparently better than the other two
methods, especially when the number of particles grows large. As aforementioned, for
PWNS1+2, the window query operations are needed on 2D containers (e.g., the quadtree
and the BUBtree). But it is addressed in Section 1 that the 2D window query often en-
counters a worse complexity than the range query on 1D containers (e.g., the segment
tree), which deteriorates as the data sets grow. Thus the O(N logN) complexity cannot
be guaranteed in PWNS1+2. In view of this, we will choose PWNS2+1 to implement the
3D PWNS SPH solver in practice.

790 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N

T
im

e
[s

]

PWNS
Direct search

(a)

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N

T
im

e
[s

]

PWNS
2+1

Direct search

(b)

Figure 13: Comparison of the performance of uniform-distribution case between the direct-traverse neighbour
search and the PWNS method. (a) 2D implementation; (b) 3D implementation.

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N

T
im

e
[s

]

PWNS
Direct search

(a)

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N

T
im

e
[s

]

PWNS
2+1

Direct search

(b)

Figure 14: Comparison of the performance of random-distribution case between the direct-traverse neighbour
search and the PWNS method. (a) 2D implementation; (b) 3D implementation.

10
5

10
6

10
0

10
1

10
2

N

T
im

e
[s

]

PWNS
2+1

PWNS
1+2

 (BUBtree)

PWNS
1+2

 (quadtree)

Figure 15: 3D PWNS performance of PWNS2+1, PWNS1+2 (quadtree) and PWNS1+2 (BUBtree) in Sweep
stage.

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 791

5.2 Parallel performance

To evaluate the parallel performance, four test cases with different number of particles
were computed. The speedup Sp =C1/Cp is used as the performance metric, where C1

and Cp are the time costs of the sequential code and the parallel code run on p processors
respectively. The placement of particles is in accordance with those cases in Section 5.1.

The parallel performance for the uniform distribution cases is shown in Fig. 16. Good
performance with slight drop in speedup can be seen till 16 processors. The drop in
speedup is a common phenomenon for MIMD (multiple instruction, multiple data) sys-
tems with a shared memory, where the efficiency of data accessing and synchroniz-
ing between CPU-caches and memory deteriorates with the increase of simultaneously-
functioning processors [47]. It should be noted that, although unavoidable communi-
cations are introduced by a parallel sort as mentioned in Section 4, we still obtained an
acceptable speedup.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of processors

S
pe

ed
up

Linear
360,000 particles
1,000,000 particles
4,000,000 particles
9,000,000 particles

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of processors

S
pe

ed
up

Linear
240,000 particles
960,000 particles
2,160,000 particles
13,500,000 particles

(b)

Figure 16: The parallel performance for the uniform-distribution cases. (a) 2D implementation; (b) 3D imple-
mentation.

In Fig. 17, one can see a better parallel performance for the random distribution cases.
This can be attributed to the scale of the container tree. For the uniform distribution
cases, the number of diverse integer indices in each subset is nearly the same as the
entire system, while this number drops considerably for random cases. As a result, much
smaller container trees are obtained for parallelized random distribution cases, leading
to a decrease of the cost for both the insert and the query operations. In SPH simulations,
the particles are in a disordered manner most of the time, thus the parallel performance of
random distribution cases demonstrates that a significant speedup and load balancing for
the SPH solver can be attained by our PWNS method. Also shown in Fig. 17, an obvious
superlinear speedup is achieved by the PWNS method. This phenomenon is mainly due
to the jump optimization technique and has been discussed in detail in Section 4. If
taking the computer architecture into account, we will find that the superlinear speedup
can be amplified by accumulated cache size [48]. That is, the accumulated capacity of

792 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of processors

S
pe

ed
up

Linear
360,000 particles
1,000,000 particles
4,000,000 particles
9,000,000 particles

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of processors

S
pe

ed
up

Linear
240,000 particles
960,000 particles
2,160,000 particles
13,500,000 particles

(b)

Figure 17: The parallel performance for the random-distribution cases. (a) 2D implementation; (b) 3D imple-
mentation.

CPU-caches for multiple processors is larger than that of a single processor. Thus in
parallel mode, more data can be stored in caches and accessed rapidly, which significantly
reduces the traffic between memory and CPUs.

5.3 Example application

As discussed before, our method can work efficiently with arbitrarily distributed parti-
cles and achieve parallel load balancing without considering the geometry of the system.
Here, we choose the dam break problem with flood impacting on an obstacle [49] as our
example application. The geometrical parameters are slightly changed in our work. As
shown in Fig. 18, the water with length L f =2.4 m, height H f =1 m and width W f =1 m
is initially at rest and bounded by the tank (3.22 m ×1 m ×1 m) and the dam. The wa-
ter is set to have density ρ= 1000 kg/m3 and dynamic viscosity η = 1×10−3 Pa·s. The
sound speed c is set to be 10

√

gH f . The solid wall is mimicked by the dummy-particle
boundary condition [12, 50]. The initial particle spacing is ∆x=0.02 m, i.e., 181364 parti-

cles are used. The time step is controlled by ∆t≤min(0.25 h
c ,0.25 h2

ν ,0.25
√

h
| f |), where f is

the body force per mass on SPH particles. We choose the time step ∆t= 1×10−4 s. The
motion equations for this dam break problem is in accordance with those used in [12,50].

When the simulation starts, the dam bounding the water is immediately removed.
Thereafter, the water will flood the tank due to gravity. When the water front reaches the
cuboid obstacle (0.16m×0.4m×0.16m), it will hit the obstacle and form a stream moving
upward. Meanwhile, part of the flood will bypass the obstacle and move forward. The
flow behaviour at t = 0.4 s and t = 0.56 s is shown in Fig. 19 and is in good agreement
with the experimental results in [49]. The thread-distribution of the particles is clearly
shown in Fig. 19 as well. The region of each thread is dynamically adapted to achieve
load balancing when the shape of fluids changes.

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 793

L

H

Lf

H
f

L1

H1

W W
f

W
1

2.4

0
.3

0
.3

Figure 18: Schematic of the 3D dam break. Top: side view; Bottom: top view.

(a) 0.4s

(b) 0.56s

Figure 19: Snapshots of the 3D dam break at time (a) 0.4s; (b) 0.56s. Particles assigned to different threads
are distinguished by their colours. A total of 12 threads are used. In order to show the behaviour of fluid clearly,
only particles of the fluid and the obstacle are shown here.

794 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

6 Conclusions

In this work, a new O(N logN) algorithm for neighbour search in SPH is proposed. This
efficient method is based on a plane sweep algorithm. Compared with existing neighbour
search methods, the proposed method is purely meshfree and compatible with process-
ing variable smoothing length, arbitrarily distributed particles and irregular kernels. The
plane sweep approach is based on a dimension-reduction methodology. By mapping cer-
tain axes into time indices (i.e., the direct mapping in 2D, the Z-order curve mapping in
3D), the neighbour search procedure for large amount of SPH particles can be performed
in an efficient batch processing manner. Much to the knowledge of authors, this is the first
plane sweep neighbour search (PWNS) method for SPH. Some optimization techniques
for traversing the tree structure which reduces the cost significantly are also discussed.
Furthermore, also with the help of the plane sweep idea, the system can be easily paral-
lelized and the load balancing can also be obtained without considering the geometrical
parameters. The numerical results of the serial code show that our method is able to
efficiently process neighbour search in SPH. Meanwhile, the parallel performance of the
PWNS method exhibits the strength for large scale problems. A successful application
of the PWNS method has been presented in [12] for simulating the chemical mechanical
polishing, a critical engineering problem in semiconductor manufacturing industry.

Acknowledgments

This research was supported by grants from the National Natural Science Foundation
of China (Nos. 11471025, 91330110, 11421101) and the Specialized Research Fund for the
Doctoral Program of Higher Education (No. 20110001120112). W.D. acknowledges the
support from Beijing International Center for Mathematical Research for his visit in the
second half of 2012, during which the work on this paper is initiated.

Appendix: BIGMIN decomposition depth

Recalling the PWNS2+1 method in Section 3.3, we could find that the BIGMIN method
is one of the key factors influencing the efficiency. That is, if the BIGMIN decomposition
doesn’t come to a suitable level, much of the effort will be wasted on filtering particles
outside the support domain. If the BIGMIN decomposition is over performed, many Z-
order curve subsegments may cover no particles, leading to an increase on the CPU time
of the sweep stage. Thus, it is necessary to find a way to predict the effect of the BIGMIN
decomposition, i.e., the ratio of those useful and redundant regions covered by Z-order
curve segments. In this Appendix, the acceptable depth of BIGMIN decomposition used
in Section 3.3 will be derived.

Before the derivation, an interesting observation on the Morton code mapping should
be addressed. Usually, in 3D SPH, each particle occupies ∆x3 space. For a L×W×H SPH
system, we have the number of particle N ≈ LWH

∆x3 . In the PWNS2+1 method, these N

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 795

particles are mapped into an N×N lattice in xy-plane. The Morton code area for a typ-
ical support domain is about Areadomain ≈ 4× 3∆x

L N× 3∆x
W N, where 3∆x is the common

smoothing length. For ordinary cases, L, W and H are comparable with each other. Con-

sequently, we have Areadomain ∝ N
4
3 implying that the derivation will not be affected by

the geometric information of the system.

As aforementioned, the Morton code implicitly reflects the visit sequence of quadtree
leaves. Thus for any support domain bounded by [Mα,Mβ], we can find a minimum
envelop box [Mmin,Mmax] representing the lowest common ancestor of all Morton-code
leaves located inside [Mα,Mβ]. For simplicity, we can subtract Mmin from [Mα,Mβ]
without losing the locality of those codes inside the subtree represented by [Mmin,Mmax].
Then we have the normalized support domain [Mα′ ,Mβ′] and the normalized envelop
box [0,Mupper], whereMα′ =Mα−Mmin,Mβ′=Mβ−Mmin,Mupper =Mmax−Mmin.
For the Morton code representation of the quadtree, all the leaves can be arranged in
a 2n×2n mesh [51], where n is the depth of the quadtree. Hence, let 2p and 2q be the
minimum power-of-two greater than xβ′ and yβ′ respectively, then it can be easily checked
that [0,Mupper] withMupper=2p+q−1 is the normalized minimum envelop of [Mα′ ,Mβ′]

if and only if xα′62p−1−16xβ′ and yα′62q−1−16yβ′ .

As discussed in [42], MBIGMIN and MLITMAX are obtained by replacing the actual
bits of Mα′ and Mβ′ with certain bit patterns. The actual bit position is the left-most
distinguishable bit (LDB) ofMα′ andMβ′ . An example of a depth-two BIGMIN is shown
in Fig. 1. Since each bit in the Morton code exactly represents a level in a quadtree, it is
implied that the lowest common ancestor of a group of Morton codes is determined by
their LDB. Moreover, the bit pattern is determined by 2p−1 for x-direction splitting or
2q−1 for y-direction splitting depending on LDB. Therefore, it can be concluded that the
procedure of the BIGMIN decomposition is the same as finding the normalized envelop
and conducting the binary space partitioning on the normalized envelop.

Employing the properties of the normalized envelop and the BIGMIN decomposition
aforementioned, we can predict the effect of the BIGMIN decomposition in a quantitative
manner. For a depth-(s+t) BIGMIN decomposition, the resulting normalized envelop of
each sub support domain will become [0,2(p−s)+(q−t)] or even smaller, where s (resp. t)
denotes the depth of partitioning in the x-direction (resp. y-direction), where s = t or
s = t+1. Meanwhile, the area of the redundant regions covered by the Z-order curve
segments can be calculated as well. As shown in Fig. 2, the envelops of the border part
of the support domain after the BIGMIN decomposition will finally follow four patterns.
Each of such border envelops consists of a useful region and a redundant region. For
each pattern, the area of the redundant regions can be obtained by the equations listed in
Tab. 1. If the entire support domain is evenly divided, the numbers of the occurrences of
Patterns I, II, III, IV will be 2×(2s−2), 2×(2t−2), 2, 2 respectively. Eventually, we have
the ratio of the redundant regions to the support domain as

R=
2×(2t−2)AreaI +2×(2s−2)AreaI I +2AreaI I I +2AreaIV

(2s−2)(2t−2)LW+2×(2t−2)Ly0+2×(2s−2)Wx0+4x0y0
,

796 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

(a) Before BIGMIN (b) depth-1 BIGMIN (c) depth-2 BIGMIN

Figure 1: An example of the BIGMIN decomposition for a Z-order curve [26,203]. The centre rectangle (blue) is
the useful region while the grey area represents the redundant region. The actual bit position for 26=(00011010)2
and 203= (11001011)2 is the left-most distinguishable bit (LDB), i.e., the first bit counting from the left in
this case, and then the minimum envelop should be [0,255] if noting 255 = (11111111)2 = (100000000)2−
(000000001)2 =28−1 (see (a)). Here, the LDB comes from the y index through the bit interleaving, hence the

y part of the midpoint 63=(26−1)=(00111111)2 , i.e., 7=(0111)2 provides the LITMAX pattern “0x1x1x1x”
and the BIGMIN pattern “1x0x0x0x” (by 7+1= 8=(1000)2), where “x” represents the bits unchanged. By
replacing the maximum range value 203= (11001011)2 with the LITMAX pattern “0x1x1x1x”, we have the
first MLITMAX = 107=(01101011)2 . In the same way, we have the first MBIGMIN = 144=(10010000)2 (see
(b)). After that, we can perform the second round of BIGMIN decomposition for the Z-order curves [26,107]
and [144,203], respectively, and obtain the subsegments A[26,63], B[74,107], C[144,159], D[192,203] (see (c)).
Meanwhile, the redundant regions (gray) covered by the Z-order curve segments also become smaller.

I I

I I

II

II

II

II

III

III IV

IV

Inner region

Figure 2: The envelops of the border part of the support domain (blue) after the BIGMIN decomposition will
finally follow four patterns (I, II, III, IV). Each of such border envelops consists of a useful region (blue) and a
redundant region (region).

where L and W are the length and the width of the normalized envelop respectively,
x0 and y0 denote the length and the width of the useful region. If the BIGMIN decom-
position is not applied, R could be 50% or even worse when the level of the envelop is

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 797

Table 1: The patterns of border envelops after the BIGMIN decomposition. In Pattern I, II, F denotes the area
of the decreasing redundant blocks (grey) labeled from 1 to n. In Pattern III, the redundant region can be
divided into several parts labeled by P, Q, R. In Pattern IV, where the size of each redundant block (G and
H) shrinks sharply, we use n′ to label the next block smaller than the nth block. Note that L (resp. W) is the
minimum power-of-two larger than x0 (resp. y0).

Pattern Area of the redundant region

I

L

W

y0

W

y0

x0

L

AreaI(x0,y0)= ∑
0<yn6y1

FIn

FIn =
L
2n

(
W
2n
−yn)

yn =

{

yn−1, yn−16
W
2n

yn−1−W2n , yn−1>
W
2n

II

L

W

x0

L

W

x0

y0

AreaI I(x0,y0)= ∑
0<xn6x1

FI In

FI In =
W
2n

(
L

2n−1
−xn−1)

xn =

{

xn−1, xn−1<
L
2n

xn−1− L2n , xn−1>
L
2n

/ III

L

W

y0

x0 L

W

x0

y0Q

R

R

Q

P

P

AreaI I I (x0,y0)=P+Q+R

P=
LW

4
−(x0−

L
2
)(y0−

W
2
)

Q=AreaI(
L
2

,y0−
W
2
)

R=AreaI I (x0,
W
2
)

IV
y0

L

W

L

W

y0

G(yn)

H(xn)

x0

x0

G(yn)

H(xn)

AreaIV =G(y1)+H(x1)

G(yn)=

{

L
2n (

W
2n−1−yn−1)+G(yn′), yn′>0

0, yn′=0

H(xn)=

{

W
2n (

L
2n−1−xn−1)+H(xn′), xn′>0

0, xn′=0

close to the root of the quadtree. However, after a depth-4 BIGMIN decomposition, for
average cases with x0 ≈

3
4L and y0 ≈

3
4W , R can be reduced to about 16%. In a typical

SPH system with a 3∆x smoothing length, there can be over 200 neighbours for one par-
ticle. Therefore, in the PWNS2+1 method, a depth-4 BIGMIN will only result in 30∼ 40
redundant neighbours. Distributing these redundant particles to the bordering normal-
ized envelops (12 for depth-4 decomposition), we have only 3 of them found per query
operation, which can be eliminate with marginal O(1) time cost. If the depth of BIGMIN
decomposition goes larger, the amount of redundant particles only decreases slightly
while the number of Z-order curve subsegments will grow exponentially, which on the
contrary results in a serious increase of the time cost. Accordingly, the desired depth of
the BIGMIN decomposition should be 4 or 5.

798 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

References

[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J. 82 (1977)
1013–1024.

[2] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to
non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375–389.

[3] J. J. Monaghan, Simulating free suface flows with SPH, J. Comput. Phys. 110 (1994) 399–406.
[4] J. J. Monaghan, SPH without a tensile instability, J. Comput. Phys. 159 (2000) 290–311.
[5] A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows by smoothed particle

hydrodynamics, J. Comput. Phys. 191 (2003) 448–475.
[6] V. Springel, L. Hernquist, Cosmological smoothed particle hydrodynamics simulations: a

hybrid multiphase model for star formation, Mon. Not. Roy. Astron. Soc. 339 (2003) 289–
311.

[7] X. Y. Hu, N. A. Adams, A multi-phase SPH method for macroscopic and mesoscopic flows,
J. Comput. Phys. 213 (2006) 844–861.

[8] J. J. Monaghan, A turbulence model for smoothed particle hydrodynamics, Eur. J. Mech.
B-Fluids 30 (2011) 360–370.

[9] D. J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput.
Phys. 231 (2012) 759–794.

[10] C. Ulrich, M. Leonardi, T. Rung, Multi-physics SPH simulation of complex marine-
engineering hydrodynamic problems, Ocean Eng. 64 (2013) 109–121.

[11] P. Cleary, J. Ha, V. Alguine, T. Nguyen, Flow modelling in casting processes, Appl. Math.
Model. 26 (2002) 171–190.

[12] D. Wang, S. Shao, C. Yan, W. Cai, X. Zeng, Feature-scale simulations of particulate slurry
flows in chemical mechanical polishing by smoothed particle hydrodynamics, Commun.
Comput. Phys. 16 (2014) 1389–1418.

[13] J. L. Bentley, A survey of techniques for fixed radius near neighbor searching, Tech. Rep.
SLAC-186, Stanford University, Stanford, CA (1975).

[14] J. J. Monaghan, Particle methods for hydrodynamics, Comput. Phys. Rep. 3 (1985) 71–124.
[15] M. Gomez-Gesteira, B. D. Rogers, A. J. C. Crespo, R. A. Dalrymple, M. Narayanaswamy,

J. M. Domı́nguez, SPHysics-development of a free-surface fluid solver-Part 2: Efficiency and
test cases, Comput. Geosci. 48 (2012) 300–307.

[16] L. Hernquist, N. Katz, TreeSPH: A unification of SPH with the hierarchical tree method,
Astrophys. J. Suppl. Ser. 70 (1989) 419–446.

[17] W. Benz, R. L. Bowers, A. G. W. Cameron, W. H. Press, Dynamics mass exchange in doubly
degenerate binaries. I. 0.9 and 1.2 M⊙ stars, Astron. J. 348 (1990) 647–667.

[18] V. Springel, The cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105–1134.

[19] X. Guo, S. Lind, B. D. Rogers, P. K. Stansby, M. Ashworth, Efficient massive parallelisa-
tion for incompressible smoothed particle hydrodynamics with 108 particles, in: 8th Int.
SPHERIC Workshop, Trondheim, Norway, 2013.

[20] P. Goswami, P. Schlegel, B. Solenthaler, R. Pajarola, Interactive SPH simulation and ren-
dering on the GPU, in: Proc. 2010 ACM SIGGRAPH/Eurograph. Symp. Comput. Anim.,
Madrid, Spain, 2010, pp. 55–64.

[21] J. Onderik, Ďurikovič, Efficient neighbor search for particle-based fluids, J. Appl. Math. Stat.
Inform. 4.

[22] B. Adams, M. Wicke, Meshless approximation methods and applications in physics based

D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800 799

modeling and animation, in: Eurograph. Tutor., 2009, pp. 213–239.
[23] O. Awile, F. Büyükkeçeci, S. Rebouxa, I. F. Sbalzarini, Fast neighbor lists for adaptive-

resolution particle simulations, Comput. Phys. Commun. 183 (2012) 1073–1081.
[24] J. Feldman, J. Bonet, Dynamic refinement and boundary contact forces in SPH with applica-

tions in fluid flow problems, Int. J. Numer. Methods Eng. 72 (2007) 295324.
[25] D. A. Barcaroloa, D. Le Touzé, G. Oger, F. de Vuyst, Adaptive particle refinement and dere-

finement applied to the smoothed particle hydrodynamics method, J. Comput. Phys. 273
(2014) 640–657.

[26] J. Barnes, P. Hut, A hierarchical O(N logN) force-calculation algorithm, Nature 324 (1986)
446–449.

[27] D. T. Lee, C. K. Wong, Worst-case analysis for region and partial region searches in multidi-
mensional binary search trees and balanced quad trees, Acta Inform. 9 (1977) 23–29.

[28] R. Davé, J. Dubinski, L. Hernquist, Parallel TreeSPH, New Astron. 2 (1997) 277–297.
[29] J. Yu, G. Turk, Reconstructing surfaces of particle-based fluids using anisotropic kernels,

ACM Trans. Gr. 32 (2013) 5:1–5:12.
[30] M. I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annu. Symp. Found. Com-

put. Sci., Houston, TX, USA, 1976, pp. 208–215.
[31] C. J. Alpert, D. P. Mehta, S. S. Sapatnekar (Eds.), Handbook of Algorithms for Physical De-

sign Automation, CRC Press, 2008.
[32] P. Rigaux, M. O. Scholl, A. Voisard, Spatial Databases: With Application to GIS, Morgan

Kaufmann, 2002.
[33] G. M. Morton, A computer oriented geodetic data base and a new technique in file sequenc-

ing, IBM, Ottawa, Canada, 1966.
[34] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry - Algo-

rithms and Applications, 3rd Edition, Springer-Verlag Berlin Heidelberg, Berlin, Germany,
2008.

[35] J. C. Wyllie, The Complexity of Parallel Computations, Ph.D. thesis, Cornell University
(1979).

[36] R. J. Anderson, G. L. Miller, Deterministic parallel list ranking, Algorithmica 6 (1991) 859–
868.

[37] R. A. Finkel, J. L. Bentley, Quad trees: A data structure for retrieval on composite keys, Acta
Inform. 4 (1974) 1–9.

[38] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun.
ACM 18 (1975) 509–517.

[39] R. Fenk, The BUB-tree, in: Proc. 28th Int. Conf. VLDB, Hong Kong, 2002.
[40] R. Bayer, The universal B-tree for multidimensional indexing: General concepts, in: Proc.

Int. Conf. WWCA ’97, Tsukuba, Japan, 1997, pp. 198–209.
[41] R. Bayer, E. M. McCreight, Organization and maintenance of large ordered indexes, Acta

Inform. 1 (1972) 173–189.
[42] H. Tropf, H. Herzog, Multidimentional range search in dynamically balanced trees, Ange-

wandte Informatik 2 (1981) 71–77.
[43] C. A. R. Hoare, Quicksort, Comput. J. 5 (1962) 10–16.
[44] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 2, Addison-

Wesley, Boston, USA, 1998.
[45] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of

Lenard-Jones molecules, Phys. Rev. 159 (1967) 98–103.
[46] H. Shi, J. Schaeffer, Parallel sorting by regular sampling, J. Parallel Distrib. Comput. 14 (2006)

800 D. Wang, Y. Zhou and S. Shao / Commun. Comput. Phys., 19 (2016), pp. 770-800

361–372.
[47] A. Agarwal, Performance tradeoffs in multithreaded processors, IEEE Trans. Parallel Distrib.

Syst. 3 (1992) 525–539.
[48] D. P. Helmbold, C. E. McDowell, Modelling speedup (n) greater than n, IEEE Trans. Parallel

Distrib. Syst. 1 (1990) 250–256.
[49] K. Kleefsman, G. Fekken, A. Veldman, B. Iwanowski, B. Buchner, A volume-of-fluid based

simulation method for wave impact problems, J. Comput. Phys. 206 (2005) 363–393.
[50] S. Adami, X. Y. Hu, N. A. Adams, A generalized wall boundary condition for smoothed

particle hydrodynamics, J. Comput. Phys. 231 (2012) 7057–7075.
[51] I. Gargantini, An effective way to represent quadtrees, Commun. ACM 25 (1982) 905–910.

