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Abstract. Let P(z) be a polynomial of degree n and for any complex number «, let
DyP(z)=nP(z)+ («—z)P'(z) denote the polar derivative of the polynomial P(z) with
respect to «. In this paper, we obtain inequalities for the polar derivative of a poly-
nomial having all zeros inside a circle. Our results shall generalize and sharpen some
well-known results of Turan, Govil, Dewan et al. and others.
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1 Introduction and statement of results

Let P(z) be a polynomial of degree n and P’(z) be its derivative. Then according to the
well-known Bernstein’s inequality [4] on the derivative of a polynomial, we have

max|P'(z)| <nmax|P(z)|. (1.1)
|z|=1 |z|=1

The equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P(z) having all zeros in |z| <1, Turan [11] proved that

max |P'(z)] > L max|P(z)]. (1.2)
|z|=1 2 |z=1

The inequality (1.2) is best possible and becomes equality for P(z)=az"+p where |x|=|B]|.

In the literature, there already exists some refinements and generalizations of the in-
equality (1.2), for example see Aziz and Dawood [3], Govil [5], Dewan and Mir [6], De-
wan, Singh and Mir [7], Mir, Dar and Dawood [10] etc.
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Inequality (1.2) was refined by Aziz and Dawood [3] and they proved under the same
hypothesis that

/ n .
max|P'(2)| 2 3 { max|P(2)|-+min|P(z) | (1.3

As an extension of (1.3), it was shown by Govil [5], that if P(z) has all its zeros in |z| <k,
k<1, then

max |P’(z )|Z—k{maX!P( z)|+ min |P(z)|

1
. 1.4
z|=1 l2|=1 k=T [z =k } 14

For the class of polynomials

n
P(z)=anz"+) ay_2"", 1<u<n,
v=p

of degree n having all its zeros in |z| <k, k<1, Aziz and Shah [2] proved

max |P'(z)| >

n
|z|=1 _1+ky{max| (2)]

|z[=1 Hlzl=

(2)l}- (15)

For =1, inequality (1.5) reduces to (1.4).
Let D,P(z) denote the polar derivative of the polynomial P(z) of degree n with re-
spect to «, then

DyP(z) =nP(z)+(a—z)P'(z).

Recently Dewan, Singh and Mir [7] besides proving some other results, also proved the
following interesting generalization of (1.5).

Theorem 1.1. If

n
P(z)=a,z"+ Z ap—yz"", 1<u<n,
v=p

is a polynomial of degree n having all its zeros in |z| <k, k<1, and & is any complex number with
10| <1, then for |z| =1,

k19| 0]
(T ) maxIP) - (m) min|P(2)| (1.6)

In this paper, we shall first prove a result which gives certain generalizations of the
inequality (1.4) by considering polynomials having all zeros in |z| <k, k<1 with s-fold
zeros at z=0. We shall also present a refinement of Theorem 1.1. We first prove the
following result.

|DsP(z)| <
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Theorem 1.2. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k <1 with s-fold
zeros at z=0, then for a,p € C with |a| >k, and |B| <1,

pn+sk)(|a| —k)

min |2DuP(e)+ g P
ziL na+ﬁ(n+slki(1’(a’_k) ‘rzr‘u:r}{]P(z)] for |z| >1. (1.7)

Remark 1.1. According to the Lemma 2.1, we have for |z| =1,

(|| —k)(n+sk)
DO b))

|zDyP(z)| >

then for suitable argument of 3, we have

B(n+sk)(|a|—k
1+k

_ |Bl(n+sk)(la —K)
1+k

2D P(z) + )P(z)‘ = |2DoP(2)] P(z)|.  (18)

For this choice of B, we have from (1.7) and (1.8) that for |z| =1,

_|Bl(n+sk) (|a| —k)
1+k

Btk a8
K

ﬁ(mlki(;'f'_k) min|P(z)|

k"
Zkln{n!tx!— ’ﬁ|(n+151_?,(<’a’_k) }mi:r}(!P(z)!.

2D P(2)] |P(2)]

:(zDaP(z)+

Zmin‘zDaP(z)—F'B(

|z[=1

Equivalently

|ZDaP(Z)’ > |,B’(Tl—|—.19]_(2](<|0¢|—k) ’P(Z)’+kln{n|“|_ |:B’(n+~19]2]((|0€|_k) }g‘uzlyp(z)” (1.9)

for |z| =1, |B| <1 and |a| > k. Making || — 1 in (1.9), we get the following

Corollary 1.1. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k<1, with
s-fold zeros at z=0, then for every complex a with |a| >k and |z| =1,

(n+sK) (&1 =) v () + =K by @)

D,P(z)| >
IDaP(z)] 2 1+k |z]=1 (1+k)kn—1 |z|=k
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Remark 1.2. Dividing both sides of (1.10) by |«| and let |«| — o0 and take s=0, we get (1.4).
For k=1 and s =0, Theorem 1.2 reduces to a result of Liman, Mohapatra and Shah [8].

Finally, we prove the following refinement of Theorem 1.1.

Theorem 1.3. If

n
P(z)=ayz"+) ay_2"", 1<u<n,
v=p

is a polynomial of degree n having all its zeros in 0 < |z| <k, k <1 and vy is any complex number
with |y| <1, then

n(Au+1v)) n(1—|y|)A
D.p(z)| < MATID by PA=l DAL 1.11
max| D, P(z)| < A, max|P(z) v A " (1.11)
where
A= Man = BVl (1.12)

n(|an|— kﬂn)ky_1+ﬂ|”n—;t|
and m=min,_|P(z)|.

Remark 1.3. Since by Lemma 2.4, we have A}, <k',1<u<n. Also when P(z) has all its
zeros in |z| <k, k<1, it is easy to verify, for example by the derivative test and Lemma
2.5, that for every a with |a| <1, the function

n(x+|af) n(1—|a])x
14+x |z|a:)1(’P(Z)’_ k*(14x)

is a non-decreasing in x. Hence Theorem 1.3 is a refinement of Theorem 1.1.

Remark 1.4. If we take y=0in (1.11), we get for |z| =1,

, nA, m
nP(z)—zP'(z)| < 1+;1;, {fi\‘i’ﬂp(z) —k_n}. (1.13)

If max,_1|P(z)| =|P(e?)], 0< ¢ <27, we get (1.13), that

|P’(ei4’)]2< " >max|P(z)|—|—kn ndy (1.14)

1+ A,/ jz1=1 (1+A},)m'

Since max(,_1|P'(z)| >|P'(¢"?)|, 0 < ¢ <27, then from (1.14), we immediately get a result
of Mir, Dar and Dawood [10].
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2 Lemmas

We need the following lemmas to prove our theorems.
Lemma 2.1. If P(z) is a polynomial of degree n having all its zeros in |z| <k, k <1, with s-fold

zeros at the origin, then for every complex a with |a| >k, we have for |z| =1,

—k k
|| 11_(:4— s) T?'i)ldp(‘z”’ (2.1)

DP(2)] >

where 0 <s<n.
The above lemma is due to Dewan and Mir [6].

Lemma 2.2. If P(z) is a polynomial of degree n and « is any non-zero complex number and
Q(z)=z"P(1/Z), then

IDaQ(2)|=[naP(z)+(1-az)P'(z)|=a||[DLP(z)| for |z|=1. (2.2)

The above lemma is an implicit in Aziz [1]. The following three lemmas are due to
Dewan, Singh and Mir [7].
Lemma 2.3. If

n
P(z) :ao—l—ZaVzl’, 1<t<n,

v=t

is a polynomial of degree n having no zeros in |z| <k, k>1, then for every complex a with |a|>1,

n
< — _
max|DP(2)| < 3 (el +50)max| P(z) | (o =1}, @23
where
so=k'T! ( (i) alﬂt—mktl+1)
0:
(%) \ath—‘mkt+l+1

and m=minp,_|P(z)|.
Lemma 2.4. If
n
P(z)=a,z"+ Z ap—yz"", 1<u<n,
v=p
is a polynomial of degree n having all zeros in |z| <k, k<1, then
. n(lan|— kmn)kzy‘kylanfy’ky_l

A, = <kH, 2.4
e BV ] @4

where m=min;_¢|P(z)|.



A.Mir / Anal. Theory Appl., 31 (2015), pp. 236-243 241

Lemma 2.5. If
n
P(z)=) a,z"
=0

is a polynomial of degree n having all its zeros in |z| <k, k>0, then |Q(z)|>m/k" for |z| <1/k,
and in particular
mn

|a1’l|>kn/

where m=min ;|| P(z)| and Q(z) =z"P(1/z).

3 Proof of theorems

Proof of Theorem 1.2. If P(z) has a zero on |z| =k, then the theorem is trivial. Therefore,
assume that P(z) has all its zeros in |z| <k, k<1. Let m=min, _¢|P(z)|, then m >0 and
hence for every complex number  with |y| <1, we have

Ymz"
]Z—n]<]P(z)] for |z|=k.

It follows by Rouche’s theorem, that the polynomial

Ymz"
-
of degree 1 has all its zeros in |z| <k, k<1. On applying Lemma 2.1 to G(z), we have for
every complex number a with || >k and |z| =1,

(n+ks)(|a| —k)
2D,6()| > "L 6z

G(z)=P(z)

Equivalently

aymnz" _ (ntks)(|a|—k) YmZ"
_ > — =1. :
o | > T4k P(z) o for |z|=1 (3.1)

Since by Laguerre’s theorem (see [9, pp. 52]), the polynomial

|zDyP(z)

B a,},mnzn—l

kn !
has all zeros in |z| <k, k<1, for every complex « with |a| >k, therefore for every complex
B with || <1, the polynomial

T(z)={eD,P(z) - TnZ1 1 P (””‘fi(]’c“’ ) p(z)- 2

{zDup(e) + BUHEMIZE) gy} T £ Bl (el 200 )
#0 for |z|>k. (3.2)

D,G(z) =D,P(z)
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Since k<1, we have T(z) #0 for |z| >1 as well.
Now choosing the argument of <y in (3.2) suitably and letting |y|—1, we get for |z| >1
and [B| <1,

e B e )

s
or

Plntks)(la|—k)
1+k

plntks)(la|—k)
1+k

‘zDaP(z)+ P(z)‘ 2% nu

_|_

in|P(z)|.
min | P(z)]

For g with |B| =1, the above inequality holds by continuity. This completes the proof of
Theorem 1.2. ]
Proof of Theorem 1.3. Since

n
P(z)=a,z"+ Z ap—yz"", 1<u<n,
=

has all its zeros in 0< |z| <k, k<1, therefore the polynomial Q(z)=z"P(1/z) has no zeros
in |z| <1/k, 1/k>1. On applying Lemma 2.3 to Q(z), we get for every complex number
a with [a|>1 and |z|=1,

ID:Q(2)! < g { (al +90) max Q) = (1)}, (3.3)
where "
m' = min|Q(z)| = 7
2= k
and

) (o) (1) +1
> |

(B ()

[an]|—m’

__ Hlan—y] n(|an| - g )k
n(]an|—kﬂn)kzﬂ+y]an,y|kV*1

Hence from (3.3) it follows that for every a with || >1 and |z| =1,

n 1 m
|DaQ(Z)!STA%){(Iw|+A—H>ma>l<|P(Z)|—(!“!—1)k—n}

z|=

_ (A g (At m
= (rra) I maxP@) (e | 64
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Using (2.2) of Lemma 2.2 in (3.4), we get for || >1 and |z| =1,

n(la|A,+1) nAy(la|—1)m
< AR _ Nl S _
][ D1 P(z)| < T4, I P(z2)] P+ A,) (3.5)
Replacing 1/ by 1y, we obtain for |y| <1and |z| =1,
n(Aut|7]) nAu(1—|v|)m
<\ T e T
Dy P(z)] < T+ 4, max|P(z)| P A,
which is (1.11) and this completes the proof of Theorem 1.3. ]
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