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Abstract. Let P(z) be a polynomial of degree n and for any complex number α, let
DαP(z)=nP(z)+(α−z)P′(z) denote the polar derivative of the polynomial P(z) with
respect to α. In this paper, we obtain inequalities for the polar derivative of a poly-
nomial having all zeros inside a circle. Our results shall generalize and sharpen some
well-known results of Turan, Govil, Dewan et al. and others.
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1 Introduction and statement of results

Let P(z) be a polynomial of degree n and P′(z) be its derivative. Then according to the
well-known Bernstein’s inequality [4] on the derivative of a polynomial, we have

max
|z|=1

|P′(z)|≤nmax
|z|=1

|P(z)|. (1.1)

The equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P(z) having all zeros in |z|≤1, Turan [11] proved that

max
|z|=1

|P′(z)|≥
n

2
max
|z|=1

|P(z)|. (1.2)

The inequality (1.2) is best possible and becomes equality for P(z)=αzn+β where |α|=|β|.
In the literature, there already exists some refinements and generalizations of the in-

equality (1.2), for example see Aziz and Dawood [3], Govil [5], Dewan and Mir [6], De-
wan, Singh and Mir [7], Mir, Dar and Dawood [10] etc.
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Inequality (1.2) was refined by Aziz and Dawood [3] and they proved under the same
hypothesis that

max
|z|=1

|P′(z)|≥
n

2

{

max
|z|=1

|P(z)|+min
|z|=1

|P(z)|
}

. (1.3)

As an extension of (1.3), it was shown by Govil [5], that if P(z) has all its zeros in |z|≤ k,
k≤1, then

max
|z|=1

|P′(z)|≥
n

1+k

{

max
|z|=1

|P(z)|+
1

kn−1
min
|z|=k

|P(z)|
}

. (1.4)

For the class of polynomials

P(z)= anzn+
n

∑
ν=µ

an−νzn−ν, 1≤µ≤n,

of degree n having all its zeros in |z|≤ k, k≤1, Aziz and Shah [2] proved

max
|z|=1

|P′(z)|≥
n

1+kµ

{

max
|z|=1

|P(z)|+
1

kn−µ
min
|z|=k

|P(z)|
}

. (1.5)

For µ=1, inequality (1.5) reduces to (1.4).
Let DαP(z) denote the polar derivative of the polynomial P(z) of degree n with re-

spect to α, then

DαP(z)=nP(z)+(α−z)P′(z).

Recently Dewan, Singh and Mir [7] besides proving some other results, also proved the
following interesting generalization of (1.5).

Theorem 1.1. If

P(z)= anzn+
n

∑
ν=µ

an−νzn−ν, 1≤µ≤n,

is a polynomial of degree n having all its zeros in |z|≤k, k≤1, and δ is any complex number with
|δ|≤1, then for |z|=1,

|DδP(z)|≤n
( kµ+|δ|

1+kµ

)

max
|z|=1

|P(z)|−n
( 1−|δ|

kn−µ(1+kµ)

)

min
|z|=k

|P(z)|. (1.6)

In this paper, we shall first prove a result which gives certain generalizations of the
inequality (1.4) by considering polynomials having all zeros in |z| ≤ k, k≤ 1 with s-fold
zeros at z = 0. We shall also present a refinement of Theorem 1.1. We first prove the
following result.
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Theorem 1.2. If P(z) is a polynomial of degree n having all its zeros in |z|≤ k, k≤1 with s-fold
zeros at z=0, then for α,β∈C with |α|≥ k, and |β|≤1,

min
|z|=1

∣

∣

∣
zDαP(z)+

β(n+sk)(|α|−k)

1+k
P(z)

∣

∣

∣

≥
|z|n

kn

∣

∣

∣
nα+

β(n+sk)(|α|−k)

1+k

∣

∣

∣
min
|z|=k

|P(z)| for |z|≥1. (1.7)

Remark 1.1. According to the Lemma 2.1, we have for |z|=1,

|zDαP(z)|≥
(|α|−k)(n+sk)

1+k
|P(z)|,

then for suitable argument of β, we have

∣

∣

∣
zDαP(z)+

β(n+sk)(|α|−k)

1+k
P(z)

∣

∣

∣
= |zDαP(z)|−

|β|(n+sk)(|α|−k)

1+k
|P(z)|. (1.8)

For this choice of β, we have from (1.7) and (1.8) that for |z|=1,

|zDαP(z)|−
|β|(n+sk)(|α|−k)

1+k
|P(z)|

=
∣

∣

∣
zDαP(z)+

β(n+sk)(|α|−k)

1+k
P(z)

∣

∣

∣

≥min
|z|=1

∣

∣

∣
zDαP(z)+

β(n+sk)(|α|−k)

1+k
P(z)

∣

∣

∣

≥
1

kn

∣

∣

∣
nα+

β(n+sk)(|α|−k)

1+k

∣

∣

∣
min
|z|=k

|P(z)|

≥
1

kn

{

n|α|−
|β|(n+sk)(|α|−k)

1+k

}

min
|z|=k

|P(z)|.

Equivalently

|zDαP(z)|≥
|β|(n+sk)(|α|−k)

1+k
|P(z)|+

1

kn

{

n|α|−
|β|(n+sk)(|α|−k)

1+k

}

min
|z|=k

|P(z)|, (1.9)

for |z|=1, |β|≤1 and |α|≥ k. Making |β|→1 in (1.9), we get the following

Corollary 1.1. If P(z) is a polynomial of degree n having all its zeros in |z|≤k, k≤1, with
s-fold zeros at z=0, then for every complex α with |α|≥ k and |z|=1,

|DαP(z)|≥
(n+sk)(|α|−k)

1+k
max
|z|=1

|P(z)|+
(n−s)|α|+(n+sk)

(1+k)kn−1
min
|z|=k

|P(z)|. (1.10)
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Remark 1.2. Dividing both sides of (1.10) by |α| and let |α|→∞ and take s=0, we get (1.4).
For k=1 and s=0, Theorem 1.2 reduces to a result of Liman, Mohapatra and Shah [8].

Finally, we prove the following refinement of Theorem 1.1.

Theorem 1.3. If

P(z)= anzn+
n

∑
ν=µ

an−νzn−ν, 1≤µ≤n,

is a polynomial of degree n having all its zeros in 0< |z|≤ k, k≤1 and γ is any complex number
with |γ|≤1, then

max
|z|=1

|DγP(z)|≤
n(Aµ+|γ|)

1+Aµ
max
|z|=1

|P(z)|−
n(1−|γ|)Aµ

(1+Aµ)kn
m, (1.11)

where

Aµ=
n(|an|−

m
kn )k2µ+µ|an−µ|kµ−1

n(|an|−
m
kn )kµ−1+µ|an−µ|

(1.12)

and m=min|z|=k|P(z)|.

Remark 1.3. Since by Lemma 2.4, we have Aµ ≤ kµ, 1≤µ≤n. Also when P(z) has all its
zeros in |z| ≤ k, k≤ 1, it is easy to verify, for example by the derivative test and Lemma
2.5, that for every α with |α|≤1, the function

n(x+|α|)

1+x
max
|z|=1

|P(z)|−
n(1−|α|)x

kn(1+x)
m

is a non-decreasing in x. Hence Theorem 1.3 is a refinement of Theorem 1.1.

Remark 1.4. If we take γ=0 in (1.11), we get for |z|=1,

∣

∣nP(z)−zP′(z)
∣

∣≤
nAµ

1+Aµ

{

max
|z|=1

|P(z)|−
m

kn

}

. (1.13)

If max|z|=1|P(z)|= |P(eiφ)|, 0≤φ<2π, we get (1.13), that

|P′(eiφ)|≥
( n

1+Aµ

)

max
|z|=1

|P(z)|+
nAµ

kn(1+Aµ)
m. (1.14)

Since max|z|=1|P
′(z)|≥ |P′(eiφ)|, 0≤φ<2π, then from (1.14), we immediately get a result

of Mir, Dar and Dawood [10].
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2 Lemmas

We need the following lemmas to prove our theorems.

Lemma 2.1. If P(z) is a polynomial of degree n having all its zeros in |z|≤ k, k≤1, with s-fold
zeros at the origin, then for every complex α with |α|≥ k, we have for |z|=1,

|DαP(z)|≥
(|α|−k)(n+ks)

1+k
max
|z|=1

|P(z)|, (2.1)

where 0≤ s≤n.

The above lemma is due to Dewan and Mir [6].

Lemma 2.2. If P(z) is a polynomial of degree n and α is any non-zero complex number and

Q(z)= znP(1/z), then

|DαQ(z)|= |nᾱP(z)+(1− ᾱz)P′(z)|= |α||D 1
α
P(z)| for |z|=1. (2.2)

The above lemma is an implicit in Aziz [1]. The following three lemmas are due to
Dewan, Singh and Mir [7].

Lemma 2.3. If

P(z)= a0+
n

∑
ν=t

aνzν, 1≤ t≤n,

is a polynomial of degree n having no zeros in |z|<k, k≥1, then for every complex α with |α|≥1,

max
|z|=1

|DαP(z)|≤
n

1+s0

{

(|α|+s0)max
|z|=1

|P(z)|−(|α|−1)m
}

, (2.3)

where

s0= kt+1
(

(

t
n

) |at|
|a0|−m

kt−1+1
(

t
n

) |at|
|a0|−m

kt+1+1

)

and m=min|z|=k|P(z)|.

Lemma 2.4. If

P(z)= anzn+
n

∑
ν=µ

an−νzn−ν, 1≤µ≤n,

is a polynomial of degree n having all zeros in |z|≤ k, k≤1, then

Aµ=
n(|an|−

m
kn )k2µ+µ|an−µ|kµ−1

n(|an|−
m
kn )kµ−1+µ|an−µ|

≤ kµ, (2.4)

where m=min|z|=k|P(z)|.
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Lemma 2.5. If

P(z)=
n

∑
ν=0

aνzν

is a polynomial of degree n having all its zeros in |z|≤k, k>0, then |Q(z)|≥m/kn for |z|≤1/k,
and in particular

|an |>
m

kn
,

where m=min|z|=k|P(z)| and Q(z)= znP(1/z).

3 Proof of theorems

Proof of Theorem 1.2. If P(z) has a zero on |z|= k, then the theorem is trivial. Therefore,
assume that P(z) has all its zeros in |z|< k, k≤1. Let m=min|z|=k|P(z)|, then m>0 and
hence for every complex number γ with |γ|<1, we have

|
γmzn

kn
|< |P(z)| for |z|= k.

It follows by Rouche’s theorem, that the polynomial

G(z)=P(z)−
γmzn

kn

of degree n has all its zeros in |z|< k, k≤1. On applying Lemma 2.1 to G(z), we have for
every complex number α with |α|≥ k and |z|=1,

|zDαG(z)|≥
(n+ks)(|α|−k)

1+k
|G(z)|.

Equivalently

|zDαP(z)−
αγmnzn

kn
|≥

(n+ks)(|α|−k)

1+k

∣

∣

∣
P(z)−

γmzn

kn

∣

∣

∣
for |z|=1. (3.1)

Since by Laguerre’s theorem (see [9, pp. 52]), the polynomial

DαG(z)=DαP(z)−
αγmnzn−1

kn
,

has all zeros in |z|<k, k≤1, for every complex α with |α|≥k, therefore for every complex
β with |β|<1, the polynomial

T(z)=
{

zDαP(z)−
αγmnzn

kn

}

+
β(n+ks)(|α|−k)

1+k

{

P(z)−
γmzn

kn

}

{

zDαP(z)+
β(n+ks)(|α|−k)

1+k
P(z)

}

−
γmzn

kn

{

nα+
β(n+ks)(|α|−k)

1+k

}

6=0 for |z|≥ k. (3.2)
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Since k≤1, we have T(z) 6=0 for |z|≥1 as well.
Now choosing the argument of γ in (3.2) suitably and letting |γ|→1, we get for |z|≥1

and |β|<1,

∣

∣

∣
zDαP(z)+

β(n+ks)(|α|−k)

1+k
P(z)

∣

∣

∣
≥
∣

∣

∣

mzn

kn

{

nα+
β(n+ks)(|α|−k)

1+k

}∣

∣

∣
,

or
∣

∣

∣
zDαP(z)+

β(n+ks)(|α|−k)

1+k
P(z)

∣

∣

∣
≥

|z|n

kn

∣

∣

∣
nα+

β(n+ks)(|α|−k)

1+k

∣

∣

∣
min
|z|=k

|P(z)|.

For β with |β|=1, the above inequality holds by continuity. This completes the proof of
Theorem 1.2. �

Proof of Theorem 1.3. Since

P(z)= anzn+
n

∑
ν=µ

an−νzn−ν, 1≤µ≤n,

has all its zeros in 0< |z|≤k, k≤1, therefore the polynomial Q(z)=zn P(1/z) has no zeros
in |z|<1/k, 1/k≥1. On applying Lemma 2.3 to Q(z), we get for every complex number
α with |α|≥1 and |z|=1,

|DαQ(z)|≤
n

1+ψ0

{

(|α|+ψ0)max
|z|=1

|Q(z)|−(|α|−1)m′
}

, (3.3)

where
m′= min

|z|= 1
k

|Q(z)|=
m

kn

and

ψ0=
(1

k

)µ+1
{
( µ

n

)( |an−µ|
|an|−m′

)(

1
k

)µ−1
+1

( µ
n

)( |an−µ|
|an|−m′

)(

1
k

)µ+1
+1

}

=
µ|an−µ|+n

(

|an|−
m
kn

)

kµ−1

n
(

|an|−
m
kn

)

k2µ+µ|an−µ|kµ−1

=
1

Aµ
.

Hence from (3.3) it follows that for every α with |α|≥1 and |z|=1,

|DαQ(z)|≤
n

1+( 1
Aµ

)

{(

|α|+
1

Aµ

)

max
|z|=1

|P(z)|−(|α|−1)
m

kn

}

=
( nAµ

1+Aµ

){ (|α|Aµ+1)

Aµ
max
|z|=1

|P(z)|−(|α|−1)
m

kn

}

. (3.4)
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Using (2.2) of Lemma 2.2 in (3.4), we get for |α|≥1 and |z|=1,

|α||D 1
α
P(z)|≤

n(|α|Aµ+1)

1+Aµ
max
|z|=1

|P(z)|−
nAµ(|α|−1)m

kn(1+Aµ)
. (3.5)

Replacing 1/α by γ, we obtain for |γ|≤1 and |z|=1,

|DγP(z)|≤
n(Aµ+|γ|)

1+Aµ
max
|z|=1

|P(z)|−
nAµ(1−|γ|)m

kn(1+Aµ)
,

which is (1.11) and this completes the proof of Theorem 1.3. �
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