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Abstract. A gyrokinetic particle simulation model is developed for simulations of the
compressional electromagnetic turbulence driven by the mirror instability. Results of
the linear simulations of mirror modes agree well with the analytic dispersion rela-
tion. Nonlinear simulations of a single mode find that the mirror instability saturates
via a phase-space trapping due to the nonlinear wave-particle interaction when the
instability drive is weak.
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1 Introduction

The gyrokinetic particle simulation [1] is very popular for studying the electrostatic modes
[2] or incompressible shear Alfven waves [3, 4]. The extension of the gyrokinetic parti-
cle simulation to compressible modes, such as mirror instability, could be useful. The
mirror instability is a low frequency electromagnetic mode destabilized by the pressure
anisotropy in plasmas with high-β (β =8πP/B2, the ratio between kinetic and magnetic
pressure). It has long been studied in space plasmas, such as planetary and cometary
magnetosheaths, in which the velocity distribution of charged particles can deviate sub-
stantially from the canonical Maxwellian distribution because collisions occur very rarely.
In such environments, the pressure anisotropy can give rise to the excitation of collective
modes. Particularly, when the perpendicular temperature exceeds the parallel tempera-
ture i.e., T⊥>T‖, a magnetic mirror instability at very low frequencies ω≪k‖vi can occur
(vi is the ion thermal velocity and k‖ is the wave vector parallel to the magnetic field.
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Here and in the rest of the article, subscripts ‖ and ⊥ correspond to B-parallel and per-
pendicular components respectively). This instability has attracted considerable interest
because of its probable importance in the contribution to the low-frequency compressible
magnetic turbulence in magnetized plasmas.

Much attention has been paid to the theoretical analysis of the mirror mode under
various conditions [5–10]. A discussion of the physical mechanism of the linear mir-
ror instability in the cold electron temperature limit (i.e., Te,‖∼ Te,⊥ ≪ Ti,‖) was offered
by Southwood and Kivelson [11]. The authors showed that the mirror instability results
from a resonant interaction between ions with small parallel velocities and low frequency
electromagnetic fluctuations. The nonlinear evolution of the mirror instability has also
been studied by Kivelson, Southwood and Pantellini [12, 13]. The linear theories in the
long wavelength limit find that the linear growth rate of the mirror instability increases
with k⊥. Therefore, it is obvious that the finite Larmor radius (FLR) effects can play an
important role when the perpendicular wavelength becomes comparable to the ion gy-
roradius. In fact, some observations in the Earth magnetosphere [14–20] and the Jovian
magnetosheath [21, 22] revealed evidence for the presence of such short perpendicular
wavelengths. Thus, in some papers [8, 10, 23–25], the FLR effects on the mirror mode
were considered. Nonetheless, it is desirable to develop a kinetic theory with a transpar-
ent physics picture that also provides an efficient tool for nonlinear studies of the mirror
instability, both analytically and computationally. Here we adopt the gyrokinetic the-
ory [26, 27] instead of the Vlasov theory. The gyrokinetic theory is a powerful approach
for the nonlinear analysis and simulation of the low-frequency instabilities. It employs
the gyrokinetic ordering that the characteristic frequency of wave and the gyroradius are
small compared with the gyro-frequency and unperturbed scale length, respectively, and
that the perturbed parallel scale lengths are of the order of the unperturbed scale lengths.
Such an ordering enables us to get rid of the explicit dependence of the Vlasov equation
on the gyrophase angle while retaining the FLR effects and the nonlinear dynamics.

A gyrokinetic particle-in-cell (PIC) simulation for the compressible mirror mode [28]
has been developed and applied for the study of the mirror instability in this work. This
is the first time that gyrokinetic particle model is extended to treat the compressional elec-
tromagnetic modes. Among the various methods used in the plasma simulation, particle
simulation is promising. Numerical PIC simulation has proven to be a powerful tool in
understanding the kinetic physics of various fundamental plasma processes, especially
where the plasma dynamics is of nonlinear nature under realistic conditions. However,
the PIC simulation also has its share of limitations. For example, in the conventional PIC
models, many high frequency modes can be produced. It is generally agreed that conven-
tional PIC models are not efficient for studying the low-frequency phenomena, because
of the disparate time and spatial scales involved. Motivated by the inadequacy in the
existing simulation models, we extend the gyrokinetic PIC simulation model [1] for the
mirror mode, in which the rapid gyromotion is removed through gyroaveraging while
the vital FLR effects and nonlinear dynamics are retained. By eliminating the gyromotion
of particles, we can remove the high frequency modes and use much larger time steps to
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save the computation power. The gyrokinetic simulation PIC model is particularly suit-
able for the mirror instability with wave frequency ω≪Ωi.

The paper is organized as follows. Section 2 describes the basic gyrokinetic Vlasov-
Maxwell equations for the particle simulation and some basic numerical schemes. Section
3 shows the linear benchmark. Section 4 discusses some nonlinear simulation results and
the saturation mechanism of the mirror instability. Section 5 is the summary of our work.

2 Gyrokinetic particle simulation of compressional modes

As discussed in Section 1, we are interested in the low frequency (i.e., ω/Ωi ≪ 1) and
short wavelength (i.e., k⊥ρi ∼ 1) mirror instability, it satisfies the following gyrokinetic
orderings [26, 27]

ω

Ωi
∼ ρi

L
∼ k‖ρi ∼

δB

B
∼ ε

k⊥ρi ∼1.
(2.1)

Here, Ωi = qB0/mic and ρi = vi,⊥/Ωi are, respectively, the ion cyclotron frequency and
Larmor radius, L is the macroscopic background plasma scale length, k‖ and k⊥ are the
parallel and perpendicular wave vectors, δB and B are the perturbed and total magnetic
field, and ε is the smallness parameter.

2.1 Gyrokinetic Vlasov-Maxwell equations

The common and distinctive property of the mirror instability is its low frequency. The
gyrokinetic equations are the equations that exploit this property. It reduces the Vlasov-
Maxwell equations by averaging the fast gyration while the FLR effects and the nonlinear
dynamics are retained to analyze the low frequency plasma dynamics [27].

The reduced system has been obtained through the use of gyrokinetic ordering
Eq. (2.1). Here, for the nonlinear simulation, we use the so-called gyrocenter coordi-
nates instead of the guiding-center coordinates [27]. In the absence of the perturbed elec-
tromagnetic fields, the gyrocenter coordinates are reduced to the guiding-center coordi-
nates. The introduction of the electromagnetic perturbation results in the reintroduction
of the gyroangle dependence to the guiding-center Hamiltonian, and consequently the
magnetic moment µ = v2

⊥/2B0 is no longer an invariant. Thus, a new set of gyrocenter
Hamiltonian equations are needed through the elimination of the gyroangle dependence
from the perturbed guiding-center equations. This provides a transformation from the
guiding-center coordinates to the gyrocenter coordinates (X,ρ‖,µ,ς), where X is the gyro-

center position, ρ‖=U/Ω, U is the gyrocenter parallel velocity, µ=v2
⊥/2B is the adiabatic

invariant, B=B0+δB, ς is the gyrophase angle [27].

When Te/Ti≪1, the kinetic effects of electrons on mirror instability can be neglected.
Therefore, the gyrokinetic simulation model is developed in this limit by only treating
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ions with the gyrokinetic model. The following gyrokinetic equation can be obtained by
averaging the Vlasov equation over the gyrophase angle [27]

∂Fi

∂t
+
(

Ub+Ẋ⊥
)

·∇Fi + ρ̇‖
∂Fi

∂ρ‖
=0,

where Fi(X,ρ‖,µ) is the gyrocenter distribution function of ions in the reduced five-
dimensional gyrocenter phase space. To reduce the level of the particle noise, we use
the δ f method [32, 33]. Let

Fi = F0i+δFi,

where F0i and δFi are the equilibrium and the perturbed distribution functions of ions,
respectively. Then, in the uniform plasma and equilibrium magnetic field, the gyrokinetic
Vlasov equation for the perturbed distribution function can be written as

∂δFi

∂t
+
(

Ub+Ẋ⊥
)

∇δFi+ ρ̇‖
∂δFi

∂ρ‖
=−ρ̇‖

∂F0i

∂ρ‖
(2.2)

and the equations of motion for ions in Eq. (2.2) are

dX‖
dt

=U =ρ‖Ωi, (2.3)

dX⊥
dt

=
c

B0
b×∇<δϕ− 1

c
v·δA>, (2.4)

ρ̇‖=
U̇

Ωi
=− q

Ωim
b·∇<δϕ− 1

c
v·δA>, (2.5)

where

< ···>=
1

2π

∫ 2π

0
(···)dς

represents gyro-averaging. Here, δϕ and δA are the perturbed scalar and vector poten-
tials, respectively. In the gyrokinetic simulation, the gyro-averaging can be carried out
numerically on a discretized gyro-orbit in real space (see Section 2.2).

In order to advance δFi, we need to calculate δϕ, δA‖=b·δA and δB‖= i(b×k⊥)·δA

from Poisson equation and Ampere’s law. It is straightforward to include the contribu-
tion from δA‖ and δϕ. Here, because the mirror instability is dominated by the contribu-
tion of δB‖, to focus on the nonlinear physics of the mirror instability, we keep only the
perpendicular Ampere’s law for simplification. In the case of the Bi-Maxwellian velocity
distribution, the perpendicular Ampere’s law can be expressed as [28–30]

− iδjy0

ck⊥
+

δB‖
4π

=−
k2
‖

k2
⊥

[

1+αb ·(β⊥−β‖)
]δB‖

4π
, (2.6)

δjy0 =qi

∫

vyδFidv+iδB‖
2nTi,⊥ck⊥

B2
0

e−k2
⊥ρ2

i /2
[

I0(k2
⊥ρ2

i /2)− I1(k2
⊥ρ2

i /2)
]

, (2.7)
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where

αb =
∫ +∞

−∞
dv‖

∫ +∞

0
v⊥dv⊥ ·4π

q2

m

∂F

B∂µ

v2
‖v2

⊥
Ω2c2

(J
′
1)

2,

I0 and I1 are the modified Bessel functions. Here, the second term on the right side of
Eq. (2.7) comes from the perpendicular gyrocenter drift.

Gyrokinetic equation of perturbed distribution function Eq. (2.2), equations of motion
Eqs. (2.3)-(2.5) and field equation Eq. (2.6) form a complete set of the gyrokinetic Vlasov-
Maxwell equations for the simulation.

2.2 Numerical methods

Over the years, the computational community has developed many methods used in
the numerical simulation. Here are some basic schemes used in our gyrokinetic PIC
simulation of the compressional modes.

2.2.1 Finite size particle

In real plasmas, charged particles move according to the electromagnetic field acting on
them, as do the particles in the computational plasma. To illustrate this idea, we can
start from the gyrokinetic equation Eq. (2.2) and the equations of motion Eqs. (2.3)-(2.5).
Obviously, to get the characteristics of particles, the gyrokinetic equation needs to be
closed by the Maxwell equations, i.e., Eq. (2.6) for δB‖, the Poisson equation for δϕ and
the parallel Ampere’s law for δA‖.

In the PIC simulation, the space is divided into small “cells” where only on the center
of the cells (grids), the electromagnetic fields are known. Therefore, δB‖, δϕ and δA‖ are
calculated via charge and current densities on the spatial grids, the charge and current
densities are calculated straightforwardly from the particles nearby the grids while the
meaning ”nearby” needs a precise definition. Simply, the charge and current densities
are obtained from the appropriate moments of distribution function, i.e. [1],

ρ(xm)=q
∫

f (xm)dv=q<∑
n

δ<Xm−Xn)>,

j(xm)=q
∫

v f (xm)dv=q<v∑
n

δ<Xm−Xn)>,

where m and n are grid and particle indices, x=X−ρ=X−v×e‖/Ω,<···>= 1
2π

∫ 2π
0 (···)dς

represents the gyroaveraging. Then, applying the calculated charge and current density,
we can find the electromagnetic fields on the corresponding grid points. When it comes
to determining the motion of particles, we need the microscopic fields acting on the indi-
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Figure 1: Steps in the cycle of PIC simulation. Subscripts p and g indicate particle and grid, respectively.

vidual particle at the gyrocenter of that particle. They can be determined as

<δϕ(xn)>=<

∫

δϕ(x)δ(x−xn)dx>=<∑
m

δϕ(Xm)δ(Xm−Xn)>,

<δA(xn)>=<

∫

δA(x)δ(x−xn)dx>=<∑
m

δA(Xm)δ(Xm−Xn)> .

Therefore, there are two steps involved in the PIC simulation. These two steps form
a complete computational circle to self-consistently calculate the wave and particle dy-
namics. Fig. 1 shows the computational circle.

To be more specific, we need to define the way of gathering the particles to the grids
and scattering fields on the grids to the particles, i.e., to define precisely what is ”nearby”.
The simplest way is to add together the particles in the same cell defined by the grids,
and disregard all other particles. Because this scheme counts the contribution of particles
in the nearest cell, it is called “nearest-grid-point” (NGP). Then, the densities on the grids
can be written as

ρ(xm)=q<∑
n

S(Xm−Xn)>, j(xm)=q<v∑
n

S(Xm−Xn)>,

where the δ-function is replaced by the shape function for NGP as

S(x)=

{

0 |x|>∆x/2,
1 |x|<∆x/2.
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Here, ∆x is the grid size. Accordingly,

<δϕ(xn)>=<∑
m

δϕ(Xm)S(Xm−Xn)>, <δA(xn)>=<∑
m

δA(Xm)S(Xm−Xn)> .

Due to the noisy behavior of NGP, many other options for the shape function were pro-
posed [31]. In our simulation, we use the linear interpolation function,

S(xm−xn)=max

[

0,1− |xm−xn|
∆x

]

.

2.2.2 Gyroaveraging

In the gyrokinetic PIC simulation, the important dynamics is the motion of the gyrocenter
instead of the charged particle. Thus, we need to introduce the scheme of the gyroaver-
aging to simplify the study analytically and numerically. There are two possible ways to
do the gyroaveraging. One is to utilize the Fourier transformation which is directly con-
nected to the analytical formulation, the other is the multi-points averaging on a charged
ring [1].

The operation of gyroaveraging involves the transformation x=X−ρ=X−v×e‖/Ω.
Firstly, to see the gyroaveraging operation via Fourier transformation, we know

P(x)=∑
k

Pkeik·x =∑
k

Pgkeik·X,

where P is a physical quantity, Pk and Pgk are its Fourier component in x and X space.
It means we are writing P(x) in two different Fourier sums, with Pk and Pgk being the
corresponding coefficients. Using this relation and the relation of x and X, we know Pk =
Pkgeik·ρ or Pkg = Pke−ik·ρ. Now considering the particle motion is a periodic gyromotion,
we can express Pgk as

Pgk =
+∞

∑
n=−∞

< Pgk >n e−inα,

where

< Pgk >n=(2π)−1
∫

Pgkeinαdς.

Since

eik·ρ = e−ik⊥ρsinα =
+∞

∑
n=−∞

Jn(k⊥ρ)e−inα,

we get
< Pgk >= J0(λ)Pk,

where <···>=1/2π
∫ 2π

0 (. . .)dς. This shows that, to perform gyroaveraging on a physical
quantity, is equivalent to multiply a factor of Bessel function to its Fourier transform.

However, since the calculation of Bessel function for each individual particle to ac-
count for its interaction with all waves in the system is computational prohibitive, the
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alternative multi-points averaging scheme is developed [1]. The basic idea is to treat the
charged particle as a uniformly charged ring with its center located at the guiding-center
and with a gyroradius ρ. For the particle whose guiding-center at X, the charge is equally
distributed at M locations of x’s on the ring. We know

P(X)=< P(x)>=<∑
k

Pkeik·(x+ρ)
>=∑

k

Pk J0(λ)eik·X.

To get the accurate representation of gyroaveraging, it is important to determine the op-
timal number of points (locations) on a ring, because it directly affects the computational
time and viability of the scheme. One way to solve this problem is to study the numerical
integration of

<exp(ik·ρ)>=(2π)−1
∫ π

−π
exp(ik·ρ)einαdα

=
+∞

∑
n=−∞

Jn(λ)
M

∑
l=1

exp(i2πnl/M)/M,

where M is the number of integration steps. Obviously, integration is more accurate
when M is larger, but it is undesirable. Since J0≫ J4 for λ=k⊥ρ<2, M=4 or 8 is adequate
in many applications.

2.2.3 δ f scheme

The basic idea of the δ f scheme is to separate the particle distribution function into the
equilibrium and the perturbed parts, and to use the particles to represent the perturbed
part only. By doing so, we can reduce the particle noise associated with the equilibrium
distribution and thus the number of particles required to a successful simulation can be
greatly reduced [32, 33].

We begin by writing distribution function as f = F0+δ f , where F0 is the equilibrium
background distribution and δ f is the perturbed time-dependent part of the distribution
function. Substitute f to the gyrokinetic equation, in the uniform plasma and magnetic
field, we get the gyrokinetic equation for the perturbed distribution function as Eq. (2.2).
In the PIC simulation, to solve this equation, we may consider loading a large number of
particles to sample the phase space. We can define “particle weight” as

wn≡
δ f

f
,

where n shows particle indices. Accordingly, δ f can be represented as

δ f (x,v,t)=
N

∑
n=1

wnS(x−xn)δ(v−vn),
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where S is the particle shape function. By taking the total time derivative of gyrokinetic
equation, we obtain

ẇn =−ρ̇‖
∂F0

F0∂ρ‖
. (2.8)

Here, we have already assumed a given equilibrium distribution of particles. Therefore,
we need to initially load the correct particle equilibrium distribution function to ensure
the correct δ f calculation in the simulation.

2.2.4 Initial loading

We begin with the simplest uniform distribution. To load the particle uniformly, we only
need a random number generator which can generate the position of particles in phase
space. After getting the uniform distribution

p(x)dx=

{

dx 0< x<1,
0 otherwise

according to the fundamental transformation law of probabilities,

|p(y)dy|= |p(x)dx|,

we can get other distribution p(y) from the uniform distribution p(x), with the help of
the so-called ”cumulative distribution function” y(x) , which is simply solved by [34].

p(y)dy=

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

dy.

For a number xi generated by uniform random generator, the number y(xi) is the corre-
sponding one for distribution p(y). As an example, taking y(x)=−ln(x),

p(y)dy=

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

dy= e−ydy

is distributed exponentially.

This method can also be generalized to a multi-dimensional distribution function [34],

p(y1,y2,···)dy1dy2 ···=
∣

∣

∣

∣

∂(x1,x2,···)
∂(y1,y2,···)

∣

∣

∣

∣

dy1dy2 ··· ,

where |∂(···)/∂(···)| is the Jacobian determinant. An important example of the use of this
equation is the Box-Muller method for generating random deviates with a Maxwellian
distribution

p(y)dy=
1√
2π

e−y2/2dy.
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Considering the transformation between two uniform deviates on (0,1), x1, x2 and two
quantities y1, y2 we have







y1 =
√

−2ln(x1)cos(2πx2),

y2 =
√

−2ln(x1)sin(2πx1).

2.2.5 Integration of particle orbit and numerical stability

We now consider the scheme for time integration. Here, we adopt a very general and
simple method, the 2nd order Runge-Kutta method. To present it more clearly, let us
consider the following set of differential equations of an oscillator:











dx

dt
=v,

dv

dt
=−ω2

0x.

In a finite difference form, the first step equation is











xt+∆t/2−xt

∆t/2
=vt,

xt+∆t/2−vt

∆t/2
=−ω2

0xt.

And the second step equation is







xt+∆t−xt

∆t
=vt+∆t/2,

xt+∆t−vt

∆t
=−ω2

0xt+∆t/2.

Assuming xt = Ae−iωt, we have the discrete-time dispersion relation for the 2nd-order
Runge-Kutta method

(ω∆t)2−4sin2

(

ω∆t

2

)

=−1

4
(ω∆t)4eiωt.

Letting ω =ω0+δω+iγ, we get

γ

ω
=

(

ω∆t

2

)3

.

This shows that, if we solve a pure oscillatory solution using the 2nd-order Runge-Kutta
scheme, the mode has a numerical instability. Therefore, ω∆t/2≪ 1 is needed for accu-
racy and stability.
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2.2.6 Parallel computing

Parallel computing plays an important role in the gyrokinetic nonlinear simulation. In
our work a simple MPI parallel computing scheme, the so-called domain cloning, has
been adapted [35]. The simulation domain is cloned and each processing element (PE)
has the same simulation domain. In this way, a copy of grid quantities can be broadcast
to each of the clones. The particles are divided among the clones and each clone has its
own set of particles. In the push phase of the simulation, each clone pushes its own set
of particles. These particles reside only in their particular domain clone and never com-
municate with other domain clones. After charge deposition onto grids in a single clone,
a global sum and broadcast are performed to get the total charge and current density
array on each clone. Then, the grid calculation is replicated on each clone. The nonlinear
simulation in our study has been carried out using 20 processors.

3 Linear benchmarking

3.1 Physical picture of linear growth of the mirror instability

Thompson gives a description of the growth of the mirror instability which corresponds to
the traditional view of the MHD instability [6]. In his work, it shows that the perturbed
perpendicular kinetic pressure induced by the compressible change of the magnetic field
can be expressed as

δp⊥=2p⊥

(

1− T⊥
T‖

)

δB

B
. (3.1)

It shows that whenever T⊥ > T‖, the particle kinetic pressure decreases when the mag-
netic field pressure increases. The perturbed pressure in Eq. (3.1) is proportional to the
unperturbed pressure. Therefore, when the unperturbed pressure is large enough, the
total perturbed pressure caused by the field change could be opposite to the change of
the magnetic pressure. This negative compression causes the mirror instability. For the
Bi-Maxwellian distribution, the condition for the instability is

δp⊥+
BδB

4π
<0.

From Eq. (3.1), we can find the threshold condition for the mirror instability

β⊥(T⊥/T‖−1)>1. (3.2)

This MHD explanation of the mirror instability is incomplete. The pressure response in
Eq. (3.1) is crucial to the instability, and the response of the particle pressure to the field
is connected with magnetic “mirror force”. However, the “mirror force” is not the force
in the normal sense as it does not change the total particle energy. The energy of particle
only exchanges between perpendicular and parallel degrees of freedom by the mirror
force. We shall see that the instability occurs through wave-particle resonance.
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Southwood and Kivelson provide a kinetic model to explain the linear growth of mirror
instability by using the so-called quasi-hydrodynamic theory [11]. Firstly, they write the
perturbed distribution function of the particles as

δF=−δW‖
∂F

∂W‖
−δW⊥

∂F

∂W⊥
=

[

δW

T‖
+

µδB

T⊥

(

1− T⊥
T‖

)]

F.

Here, W, W‖, W⊥ are the total, parallel and perpendicular energy,

δW‖=δW−µδB, δW⊥=µδB.

In the low-frequency limit, dW/dt=µ∂B/∂t, for a perturbation varying as exp(ik·r+γt),
we find

δF=

[

µδB

T⊥

(

1− T⊥
T‖

)]

F+

(

γµδB

γ+ik‖v‖

)

F

T‖
.

The last term comes from the wave-particle resonance. When γ is small, this term is
negligible except for the resonant particles with v‖≈0. It shows that the behavior of the
resonant particles, which resonate with the wave, is much different from the rest of pop-
ulation in the distribution function. Their presence causes a difference in the dispersion
relation of the mirror mode between the MHD and kinetic approaches. Taking the second
moment of δF and substituting it to the perpendicular force balance equation yields

BδB

4π
+2p⊥

(

1− T⊥
T‖

)

δB

B
+2

γ

k‖

(

∫

dv‖πδ(v‖)F‖

)

T2
⊥

T‖

δB

B
=0, (3.3)

where F‖ is the distribution function after the integral over the perpendicular velocity has
been carried out. The Eq. (3.3) represents the total perpendicular pressure balance. The
first term on the left hand side is the perturbed magnetic pressure, the second term is the
adiabatic response of the bulk plasma to the magnetic perturbation and the third term
represents the response of the resonant particles with very slow parallel velocity. Unlike
what occurs for the bulk of the plasma where energy is simply exchanged between per-
pendicular and parallel degrees of freedom, the energy of resonant particles does change
when the instability develops. Since v‖≈ 0, the resonant particles do not move a signif-
icant distance along the field in the instability growth time (1/γ). Thus the change of
field acting on a resonant particle is simply due to the local temporal increase or decrease
of field. In contrast, for the bulk of the plasma, the predominant change of field acting on
the particle is from the spatial variation of the field perturbation and due to the particle
motion in the field.

The linear mirror instability thus progresses in the following way. The field in-
crease/decrease leads to a pressure decrease/increase in the bulk plasma that causes a
net local pressure deficit/surplus. The pressure is balanced by the resonant particle pres-
sure. The resonant particles are accelerated/decelerated by the increasing/decreasing
field thus resulting in an anti-phase compared to the bulk of plasma.



H. Qu and Z. Lin / Commun. Comput. Phys., 4 (2008), pp. 519-536 531

However, because of the limitation of the quasi-hydrodynamic theory, Southwood and
Kivelson do not consider the effects of finite Larmor radius to the linear growth rate. By
using the gyrokinetic theory, we have discussed the FLR effects to the growth rate of the
mirror instability [28].

3.2 Linear simulation and benchmark

To verify the simulation code, we carry out a linear simulation and compare the simu-
lation results to our analytical results [28]. By using the gyrokinetic equations and the
perpendicular Ampere’s law introduced in Section 2, a 1D gyrokinetic simulation code is
developed. Here, we assume k=(k⊥,0,k‖) in XOZ plane, k⊥ along x-direction, k‖ along
z-direction, and the ambient magnetic field points to z-direction. In the linear simula-
tion, by using the δ f scheme and keeping only the first order terms of small quantity ε
used in the gyrokinetic approximation Eq. (2.1), we can solve the linear gyrokinetic equa-
tion from Eq. (2.2) by integrating along the unperturbed orbits. The positions of ions
in z-direction are needed to be advanced through equation of motion (2.3). Right hand
sides of Eqs. (2.4)-(2.5) are zero for the 1D linear simulation. The perpendicular Am-
pere’s law, Eq. (2.6), can be solved by using the fast Fourier transform (FFT) and taking
δAy =−iδB‖/k⊥ in k-space.

In the linear run of this simulation code, only a single mode m = n = 1 is calculated
using a Fourier filter in k-space, where m and n is the mode number in perpendicular and
parallel direction. Accordingly, the size of simulation box is chosen as Lx =2π/k⊥ in the
x-direction, and

Lz = Lx/(k‖/k⊥)

in the z-direction. The simulation domain is discretized by a set of grids in both x and z di-
rections and the positions of ions are loaded uniformly in the cells with the Bi-Maxwellian
distribution in the velocity space.

In the Vlasov-Maxwell equations, all the physical quantities have their own physical
units. This is not convenient for simulation. Therefore, all the time quantities are nor-
malized by ion Larmor frequency Ωi and the length quantities by ion Larmor radius ρi.
As a result, the velocity quantities are normalized by ion perpendicular thermal velocity
vi,⊥=Ωiρi. Thus, the normalized simulation box length are

L̂x =2π/(k⊥ρi), L̂z = L̂x/(k‖/k⊥).

To make sure that the numerical resolution does not affect the physics, we have car-
ried out convergence studies with regard to the number of particles Np, the number of
grids Ng and the size of time step ∆t·Ωi [28]. In our simulation, we choose Np =1.6×105,
Ng = 64 per mode and the normalized time step ∆t·Ωi = 1 to insure that uncertainty is
less than 3% [28].

The code is benchmarked by comparison between the linear growth rates obtained
from simulation and corresponding analytical solutions [28]. In Fig. 2, for βi,⊥ and Ai=1,
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Figure 2: Maximum growth rate of the mirror instability obtained from 2D linear gyrokinetic simulation in
uniform plasma. For comparison, the solid line is the corresponding analytic result from gyrokinetic theory.

the crosses indicate the results from linear simulation and the solid line indicates the re-
sults from the theoretical analysis based on the linear gyrokinetic theory. It shows that
the numerical results agree very well with the theoretical prediction. Therefore, this lin-
ear simulation recovers the analytic theory of the mirror instability, and the benchmark
provides a linear verification of the simulation code for the nonlinear simulation.

4 Nonlinear simulation results

Kivelson and Southwood [12] present a simple nonlinear saturation model of the mirror
instability by using the theory of the relaxation to a marginal stability. In their work, the
particles can be divided to the trapped particles with large pitch angle and untrapped
particles with small pitch angle. In the part of the perturbation where the field increases,
the trapped particles will be excluded from the rising field region by the mirror force.
This produces a decrease in the particle pressure and thus allows the marginally stable
state to be achieved. In the center of magnetic field well, although no particle can be
excluded, some trapped particles can be cooled by losing perpendicular energy through
betatron deceleration as

∆W =µ∆B=W⊥(∆B/B).

In this way, the perpendicular particle pressure decreases, the growing mirror perturba-
tion in the field well can be stabilized by the relaxation to a marginal stability. We now
use our gyrokinetic PIC code to study the nonlinear saturation of the mirror instability.

Building on the linear benchmark of the gyrokinetic simulation of the mirror instabil-
ity in Section 3, we can perform the nonlinear simulation. In the nonlinear simulation, by
using the δ f method and keeping the second order terms of small quantity ε, we can solve
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the nonlinear gyrokinetic Vlasov equation from Eq. (2.2). The velocity and acceleration of
ions in the z-direction can be advanced through the equations of motion Eqs. (2.3)-(2.5).
Here, the nonlinear effect from the parallel acceleration, which is a second order small
quantity, is considered in the gyrokinetic equation. Combined with the perpendicular
Ampere’s law (2.6), they are the Vlasov-Maxwell equations for the nonlinear gyrokinetic
simulation.

(a) (b)
Figure 3: Time history of the perturbed parallel magnetic field and temperature anisotropy for βi,⊥ = 2 and
Ai =0.99.

Before initiating the complicated nonlinear study of the mirror turbulence, the simple
nonlinear simulation of a single mode needs to be carried out. Here, we use βi,⊥ = 2
and Ai = 0.99, k⊥ρi = 0.2, k‖/k⊥ = 0.2. Fig. 3a shows the time history of the amplitude
of the perturbed parallel magnetic field. The linear growth and nonlinear saturation of
the mirror mode are indicated in the early part of this graph. Then it shows that the
amplitude of the saturated mode oscillates in time and the oscillation period is t̂nl =
tnl ·Ωi ≈1170, i.e.,

ω̂nl =ωnl/Ωi≈0.0054.

From Fig. 3a, we find that δB‖/B0 ≈0.023 after saturation. From the motion equation of
the deeply trapped particles driven by parallel mirror force,

mẍ=−µ∇‖δB,

we can calculate the bounce frequency of the trapped particles under such amplitude of
the perturbed magnetic field

ω̂b = ω̂b/Ωi =

(

k2
‖

µB0

Ω2
i

δB‖
B0

)1/2

=
k‖
k⊥

k⊥ρi

√

δB‖
2B0

=0.0043. (4.1)

According to the parameters adopted and the linear simulation result, we also know that
the linear growth rate of this mode is γ̂ = γ/Ωi ≈ 0.0043 which matches well with our
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(a) (b)
Figure 4: Time history of the perturbed parallel magnetic field and temperature anisotropy for βi,⊥ = 12 and
Ai =5.

analytical result from the linear gyrokinetic theory [28],

γ̂=
k‖
k⊥

k⊥ρi
−Λ+β∗Ai√

πβ∗(1+Ai)3/2
, (4.2)

where

Λ=1+
k2
‖

k2
⊥

[1+αb(β⊥−β‖)], β∗
⊥= β⊥e−k2

⊥ρ2
i /2[I0(k⊥ρi)− I1(k⊥ρi)].

We find that the nonlinear oscillation frequency of the mirror mode is close to the bounce
frequency of the trapped particles and the linear growth rate of the mode,

ω̂nl ∼ ω̂b∼ γ̂. (4.3)

At the same time, in Fig. 3b, it shows that the temperature anisotropy almost does not
change when saturation happens. This means that the mechanism of the relaxation to the
marginal stability does not work in the nonlinear saturation of mirror mode in this case.
Rather, it is the phase space trapping that determines the nonlinear saturation process of
the mirror mode. This saturation mechanism for mirror mode has not been mentioned
before.

However, for the strong drive case, in which βi,⊥ and Ai are much larger than 1, the
situation is different. From Figs. 4a and 4b, for βi,⊥ = 12 and Ai = 5, it shows that the
temperature anisotropy drops dramatically to zero after saturation. It is consistent with
the previous study using the marginal stability theory as discussed in Section 4.1 [12,13].
Therefore, we find that there may be two different types of saturation mechanisms for
the mirror instability. The phase space trapping plays a dominant role for the weak drive
and the mechanism of the relaxation to the marginal stability is dominant for the strong
drive.
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5 Summary

In this paper, we have presented a gyrokinetic PIC model for the linear and nonlinear
simulation of the compressional mirror instability. Our linear gyrokinetic particle sim-
ulation results agree with the analytical results very well and it provides a good bench-
mark for the nonlinear simulation. From the difference of nonlinear simulation results of
mirror mode under different conditions, we find that there are different dominant satu-
ration mechanisms. For the weak drive case, the mechanism of the phase space trapping
is dominant. However, the mechanism of the relaxation to the marginal stability is dom-
inant for the strong drive case.
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