Computational Study of Scission Neutrons in Low-Energy Fission: Stationary and Time-Dependent Approaches

M. Rizea1,* and N. Carjan1,2

1 National Institute of Physics and Nuclear Engineering, ”Horia Hulubei”, PO Box MG-6, Bucharest, Romania.
2 Centre d’Études Nucléaires de Bordeaux-Gradignan, UMR 5797, CNRS/IN2P3-Université Bordeaux 1, BP 120, 33175 Gradignan Cedex, France.

Received 4 February 2010; Accepted (in revised version) 27 August 2010
Available online 14 October 2010

Abstract. The emission of scission neutrons from fissioning nuclei is of high practical interest. To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scission dynamics. Numerically, this implies the solution of the bi-dimensional Schrödinger equation, both stationary and time-dependent. To describe axially symmetric extremely deformed nuclear shapes, we have used the Cassini parametrization. The Hamiltonian is discretized by using finite difference approximations of the derivatives. The main computational challenges are the solution of algebraic eigenvalue problems and of linear systems with large sparse matrices. We have employed appropriate procedures (Arnoldi and bi-conjugate gradients). The numerical solutions have been used to evaluate physical quantities, like the number of emitted neutrons per scission event, the primary fragments’ excitation energy and the distribution of the emission points.

AMS subject classifications: 65M06, 81Q05
PACS: 02.60.Lj, 02.70.Bf, 25.85.Ec
Key words: Scission neutrons, fission, bi-dimensional Schrödinger equation, stationary, time-dependent, non-standard finite differences.

1 Introduction

During the last years, there has been an increasing interest in the simulation of fundamental processes in quantum systems by numerical methods. In this context, the solution of the Schrödinger equation plays a major role in the investigation of phenomena...
like nuclear fission and fusion, atomic and nuclear collisions, laser-atom interaction. In
the present paper we focus on the scission neutrons, subject of present interest, important
for nuclear applications. Among the neutrons emitted during fission, one can distinguish
chronologically three categories: the scission neutrons \(10^{-21}-10^{-20}\) s), the prompt neu-
trons \(10^{-18}-10^{-16}\) s) and the delayed neutrons \(>10^{-16}\) s). The last two components
form the large majority of fission neutrons and have been extensively studied. The scis-
sion neutrons were less investigated, but are recently receiving an increasing attention.
Estimated to represent 10-30% of the total number of neutrons, this kind of neutrons are
considered responsible for important effects observed in the fission process (see [1–7])
and are essential ingredients in numerical reactor simulations. One possible approach to
study the emission of scission neutrons is the sudden approximation [8]. This implies
the numerical solution of an eigenvalue problem associated to the bi-dimensional sta-
tionary Schrödinger equation for independent neutrons in axially symmetric extremely
deformed nuclear shapes. We have used a grid-based procedure, in which the equa-
tion is discretized by finite difference approximations of the derivatives. We are led to
an algebraic eigenvalue problem with large (sparse) matrix, which is solved by the Im-
plicitly Restarted Method of Arnoldi. In the sudden approximation the scission is seen
as a sudden transition between two different nuclear configurations. By calculating the
bound state wavefunctions just-before-scission \(\psi_i\) and immediately-after-scission \(\psi_f\),
one can evaluate physical quantities like: the number of scission neutrons per fission
event and the excitation energy of primary fission fragments. An alternative approach
is to consider the last stage of the fission process as a time dependent fast (diabatic) pro-
cess. By solving the bi-dimensional time-dependent Schrödinger equation (TDSE) with
a potential variable in time between \(\psi_i\) and \(\psi_f\), one can study the scission process in a
more realistic model. The numerical solution of TDSE is obtained by a Crank-Nicolson
scheme, which requires the solution of large sparse linear systems that was obtained by
a variant of the bi-conjugate gradient method. Transparent Boundary Conditions have
been implemented, to avoid reflexions on the numerical boundaries.

A similar time-dependent approach was applied in [9] to a different sequence of nu-
clear shapes during fission, namely to the descent of the fissioning nucleus from the sad-
dle point to the scission point. The numerical calculation capabilities being quite limited
at that time, the authors had to neglect the spin-orbit coupling, use a non-diffuse nuclear
potential (square well) and a much smaller spatio-temporal grid.

In the following we present some details on the physical problem, on the mathemati-
cal model and on the numerical procedures. Also, some results in a definite case will be
shown.

2 The bi-dimensional Schrödinger equation

To obtain the bound states, one has to solve the eigenvalue problem:

\[
\mathcal{H}\psi = E\psi,
\]

(2.1)
with appropriate boundary conditions. \(\mathcal{H} \) is the Hamiltonian, which includes the Laplacian, the nuclear potential, the spin-orbit coupling and, for charged particles, the Coulomb potential. The nuclear shape is assumed to be axially symmetric and we use cylindrical coordinates.

The total wavefunction has two components, corresponding to spin-up and spin-down as follows

\[
\Psi(\rho,z,\phi) = f_1(\rho,z)e^{i\Omega_1 \phi} \, |\uparrow\rangle + f_2(\rho,z)e^{i\Omega_2 \phi} \, |\downarrow\rangle,
\]

\((2.2a)\)

\(\Omega \) is the projection of the total angular momentum along the symmetry axis. Due to the axial symmetry, the angular dependence is removed and the equation \(\mathcal{H}\Psi = E\Psi \) can be written as:

\[
\begin{bmatrix}
O_1 - KS_c & -KS_d \\
-KS_b & O_2 - KS_d
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix} = E
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}.
\]

\((2.3)\)

The operators \(O_1, O_2 \) contain the Laplacian:

\[
O_{1,2} = -\frac{\hbar^2}{2\mu}\left(\Delta - \frac{\Lambda_1^2}{\rho^2}\right) + V(\rho,z), \quad \Delta = \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial z^2}.
\]

\(\hbar \) is the Planck constant, \(\mu \) is the reduced mass, \(V(\rho,z) \) is the potential, \(K \) is a constant and

\[
S_a = \frac{\partial V}{\partial \rho} \frac{\partial}{\partial z} - \frac{\partial V}{\partial z} \left(\frac{\partial}{\partial \rho} + \frac{\Lambda_2}{\rho} \right), \quad S_b = -\frac{\partial V}{\partial \rho} \frac{\partial}{\partial z} + \frac{\partial V}{\partial z} \left(\frac{\partial}{\partial \rho} - \frac{\Lambda_1}{\rho} \right),
\]

\[
S_c = \frac{\partial V}{\partial \rho} \frac{\Lambda_1}{\rho}, \quad S_d = -\frac{\partial V}{\partial \rho} \frac{\Lambda_2}{\rho}.
\]

The operators \(S_a, \cdots, S_d \) represent the spin-orbit coupling.

Let us note that the Hamiltonian can be simplified by the transformations \(g_1 = \rho^{1/2}f_1, g_2 = \rho^{1/2}f_2 \), which remove the first derivative from the Laplacian operator. It results a new Hamiltonian \(\hat{\mathcal{H}} \) which has the same eigenvalues as \(\mathcal{H} \) and its eigenfunctions are the pairs \(g_1, g_2 \), related to \(f_1, f_2 \) by the above mentioned transformation. The Hamiltonian \(\hat{\mathcal{H}} \) is self-adjoint for null boundary conditions (corresponding to bound states), so that its spectrum is real (see [10]). With the notations:

\[
L_1 = -\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial z^2} + \frac{1/4 - \Lambda_1^2}{\rho^2}\right) + V(\rho,z),
\]

\((2.4a)\)

\[
L_2 = -\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial z^2} + \frac{1/4 - \Lambda_2^2}{\rho^2}\right) + V(\rho,z),
\]

\((2.4b)\)

\[
Q_1 = K\left(\frac{\partial V}{\partial \rho} \frac{\partial}{\partial z} - \frac{\partial V}{\partial z} \frac{\partial}{\partial \rho}\right), \quad Q_2 = K \frac{\Omega}{\rho} \frac{\partial V}{\partial z},
\]

\((2.4c)\)

\[
P_a = -Q_1 + Q_2, \quad P_b = Q_1 + Q_2, \quad P_c = -K \frac{\Lambda_1}{\rho} \frac{\partial V}{\partial \rho}, \quad P_d = K \frac{\Lambda_2}{\rho} \frac{\partial V}{\partial \rho},
\]

\((2.4d)\)
the eigenvalue problem for the Hamiltonian \hat{H} can be written in the form:

$$
\begin{bmatrix}
L_1 + P_c & P_a \\
P_b & L_2 + P_d
\end{bmatrix}
\begin{bmatrix}
g_1 \\
g_2
\end{bmatrix}
= E
\begin{bmatrix}
g_1 \\
g_2
\end{bmatrix}.
$$

(2.5)

2.1 Nuclear shape description

To describe the nuclear shape we have used the Cassini parametrization, appropriate for strong deformations, as appearing during the nuclear fission. The Cassinian ovals are taken as the first approximation to the nuclear shape and the deviation from it is represented by a Legendre polynomial expansion. In the Cassini parametrization (see [11, 12]) an axially deformed shape is described in cylindrical coordinates by the relations:

$$
\bar{\rho} = \frac{1}{\sqrt{2}} \left(Q(x) - R^2(x)(2x^2 - 1) - s \right)^{\frac{1}{2}},
$$

(2.6a)

$$
\bar{z} = \frac{\text{sign}(x)}{\sqrt{2}} \left(Q(x) + R^2(x)(2x^2 - 1) + s \right)^{\frac{1}{2}},
$$

(2.6b)

where

$$
Q(x) = \left(R^4(x) + 2sR^2(x)(2x^2 - 1) + s^2 \right)^{\frac{1}{2}},
$$

$s = \epsilon R_0^2$ is the squared distance from the focus of Cassinian ovals to the origin and $-1 \leq x \leq 1$. The function $R(x)$ is given in terms of Legendre polynomials by:

$$
R(x) = R_0 \left(1 + \sum_{m \geq 1} \alpha_m P_m(x) \right),
$$

$m \geq 1$.

The set of parameters (ϵ, α_m) determines the nuclear shape. In practice, the following transformations are performed:

$$
\bar{\rho} = c \rho, \quad \bar{z} = cz + \bar{z}_m.
$$

c is determined by the requirement that the volume enclosed by the surface is constant, independent of nuclear deformation (expressing the incompressibility of nuclear matter), while \bar{z}_m results by fixing the center of mass at the origin.

2.2 The definition of the potential

To define the potential, we consider the function

$$
\Phi(\rho, z) = \left((z^2 + \rho^2)^2 - 2\epsilon R_0^2 (z^2 - \rho^2) + \epsilon^2 R_0^4 \right)^{\frac{1}{2}} - R_0 \left(1 + \sum_{m \geq 1} \alpha_m P_m(x) \right).
$$
The equation $\Phi(\rho, z) = 0$ represents the nuclear surface in cylindrical coordinates. The nuclear potential is given by

$$V(\rho, z) = -V_0 \left[1 + \exp \left(\frac{\Theta}{a_0} \right) \right]^{-1},$$

(2.7)

where V_0 is the depth and a_0 the diffuseness. The quantity Θ is an approximation to the distance between the point (ρ, z) and the nuclear surface, given by the expression: $\Theta(\rho, z) = \Phi / |\nabla \Phi|$ (see [12]). At $\epsilon = 0$, the potential (2.7) turns into the Woods-Saxon potential of the spherical nucleus.

The spin-orbit interaction is taken proportional to the gradient of the potential (2.7):

$$V_{so} = -K [\vec{\sigma} \times \vec{p}] \nabla V,$$

$$K = \lambda \left(\frac{\hbar}{2 \mu c} \right)^2,$$

(2.8)

where $\vec{\sigma}$ and \vec{p} are the nucleon spin and momentum (see [13]). The constant K depends on the Compton wavelength and on the parameter λ. Transforming to cylindrical coordinates (ρ, z, ϕ) and using the assumed axial symmetry in the form $\partial V / \partial \phi = 0$, we find

$$V_{so} = -\left(\frac{K}{2} \right) S,$$

$$S = \sigma^+ e^{-i\phi} \left\{ \frac{\partial V}{\partial \rho} \frac{\partial}{\partial z} - \frac{\partial V}{\partial z} \left[\frac{\partial}{\partial \rho} + \frac{1}{\rho} \left(-i \frac{\partial}{\partial \phi} \right) \right] \right\} + \sigma^- e^{i\phi} \left\{ -\frac{\partial V}{\partial \rho} \frac{\partial}{\partial z} + \frac{\partial V}{\partial z} \left[\frac{\partial}{\partial \rho} - \frac{1}{\rho} \left(-i \frac{\partial}{\partial \phi} \right) \right] \right\} + 2\sigma_z \frac{\partial V}{\partial \rho} \frac{1}{\rho} \left(-i \frac{\partial}{\partial \phi} \right).$$

Here $\sigma^\pm = \sigma_x \pm i \sigma_y$ and $\sigma_x, \sigma_y, \sigma_z$ are the Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Applied to functions of the mentioned form (up+down) this V_{so} gives rise to the additional terms S_a, \ldots, S_d in Eq. (2.3).

Note that all the components of the resulting Hamiltonian are real and the wavefunction is defined in terms of the real functions f_1 and f_2. As mentioned, this Hamiltonian can be simplified, leading to wavefunctions with the components g_1 and g_2, also real.

For charged particles, the potential contains also a Coulomb term (see [12]).

3 The computational model

For numerical treatment, the infinite physical domain is reduced to a finite one, $[0, R] \times [-Z, Z]$, which is discretized by a grid with the mesh points:

$$\rho_j = j \Delta \rho, \quad j = 1, \ldots, N_\rho, \quad z_k = k \Delta z, \quad k = -N_z, \ldots, N_z.$$

(3.1)
For \(j = N_{\rho} \), \(\rho_j = R \) and for \(k = N_{z} \), \(z_k = Z \). The axis \(\rho = 0 \) is excluded since on it the wave function (with the components \(g_1 \) and \(g_2 \)) is assumed to be zero. At each point the partial derivatives appearing in \(\hat{H} \) are approximated by finite difference formulae. But these formulae should correspond to the behavior of the solution. Instead of standard formulae, in the vicinity of \(\rho = 0 \) we shall use adapted formulae, which take into account the operated function transformation (of the form \(g = \rho^{1/2}f \)). To introduce them, let us consider the one-dimensional eigenvalue problem on the interval \([0,1]\):

\[
- \Delta f + \frac{\Lambda^2}{\rho^2} f = Ef, \tag{3.2}
\]

with the boundary conditions: \(f'(0) = 0 \) (for \(\Lambda \neq 1 \)) or \(f(0) = 0 \) (for \(\Lambda = 1 \)) and \(f(1) = 0 \). \(\Lambda \) is a nonnegative integer and \(\Delta \) is the Laplacean in polar coordinates defined by

\[
\Delta f = \frac{d^2 f}{d\rho^2} + \frac{1}{\rho} \frac{df}{d\rho}, \tag{3.3}
\]

where \(f \) is a cylindrically symmetric function of \(\rho \).

By the transformation \(g(\rho) \equiv \rho^{1/2}f(\rho) \), Eq. (3.2) is modified as follows:

\[
- \frac{d^2 g}{d\rho^2} + \frac{\Lambda^2 - 1/4}{\rho^2} g = Eg. \tag{3.4}
\]

The above transformation is in fact the Liouville transformation, applied to that particular equation. It eliminates the first derivative and modifies the scalar product from \(\int_{0}^{\infty} f_m^* f_n d\rho \) to the simpler expression \(\int_{0}^{\infty} g_m^* g_n d\rho \). The boundary conditions can now be rewritten as: \(g(0) = g(1) = 0 \). The condition \(g'(0) = 0 \) is fulfilled provided that \(f(0) \) is finite and this is ensured by the conditions for \(f \).

It is known that the equation

\[
w'' + \left(\kappa^2 - \frac{\Lambda^2 - 1/4}{\rho^2} \right) w = 0 \tag{3.5}
\]

has as regular solution \(w = \rho^{1/2}J_\Lambda(\kappa \rho) \), where \(J_\Lambda \) is the Bessel function of the first kind (see [14], Eq. (9.1.49)). Since \(w(1) = J_\Lambda(\kappa) \), if \(\kappa \) is a zero of \(f \), \(w(1) = 0 \) and the solution of our eigenvalue problem is \(g(\rho) = \rho^{1/2}J_\Lambda(\kappa \rho) \) and the eigenvalue is \(E = \kappa^2 \).

Now, we want to solve numerically the problem associated to Eq. (3.4) by approximating the derivative through finite differences, which converts the differential problem into an algebraic eigenvalue problem. Let us consider a partition of the \([0,1]\) interval with the mesh points \(\rho_j = jh, j = 0, \cdots, J, \rho_J = 1 \). The standard finite difference approximation of the second derivative is

\[
g_j'' \approx \frac{g_{j+1} - 2g_j + g_{j-1}}{h^2}, \tag{3.6}
\]

where \(g_j = g(jh) \). This formula is exact for polynomials up to some degree (the leading term of the error is proportional to \(g^{(4)} \)). It is appropriate for the function \(f \) from Eq. (3.2),
which has a normal Taylor expansion around $\rho = 0$. But the function g, which is the product of f by the factor $\rho^{1/2}$, has a different behavior. In fact, the regular solution of Eq. (3.4) is of the form:

$$g(\rho) = \rho^{1+\lambda} \sum_{i=0}^{\infty} a_{2i} \rho^{2i}. \quad (3.7)$$

We look for a difference formula adapted to such a function. We shall take it of the form:

$$g''_{j} \approx \frac{a_{j} g_{j+1} + b_{j} g_{j} + a_{j-1} g_{j-1}}{h^2}. \quad (3.8)$$

The coefficients a_j, b_j are determined so that the formula is exact when g is replaced by $\rho^{1+\lambda}$ and $\rho^{5/2+\lambda}$ (the leading terms of the expansion). It results:

$$a_j = \frac{4(\lambda+1)}{f(p_j-q_j)}, \quad b_j = \frac{1}{f} \left[\Lambda^2 - \frac{1}{4} - \frac{4(\lambda+1)q_j}{p_j-q_j} \right], \quad (3.9a)$$

$$p_j = \left(1 + \frac{1}{f} \right)^{\Lambda+\frac{3}{2}} + \left(1 - \frac{1}{f} \right)^{\lambda+\frac{3}{2}}, \quad q_j = \left(1 + \frac{1}{f} \right)^{\lambda+\frac{3}{2}} + \left(1 - \frac{1}{f} \right)^{\lambda+\frac{3}{2}}. \quad (3.9b)$$

Note that $a_j \to 1, b_j \to -2$, as $j \to \infty$, i.e., the formula (3.8) approaches the standard one with increasing j.

Using the formula (3.8) in Eq. (3.5), we obtain the following algebraic eigenvalue problem (E is the eigenvalue and g_j form the eigenvector):

$$- \frac{a_j g_{j+1} + b_j g_{j} + a_{j-1} g_{j-1}}{h^2} + \frac{\Lambda^2 - 1/4}{\rho_{j}^2} g_{j} = E g_{j}, \quad j = 1, \ldots, J-1, \quad g_0 = g_J = 0. \quad (3.10)$$

This problem has been solved with the package ARPACK [15], based on the Implicitly Restarted Method of Arnoldi.

To show the effect of the modification in the finite difference formula, we present in the Table 1 some results with both formulae: standard and adapted. For $\lambda = 0$, the errors in the first three eigenvalues at different step sizes are given.

One can see a clear gain in accuracy with the adapted formula, especially for the first eigenvalue. An even better adapted formula can be obtained if we ask it to be also satisfied by the next terms in the expansion (3.7), but then the formula must contain more variable coefficients (see [10]).

For $\lambda > 0$, the difference between the adapted formula and the standard one is smaller, since the polynomial component of the solution becomes more important (its leading term is $\rho^{\lambda+1/2}$), but still the adapted formula is superior. We should mention that the variable coefficient is used only near $\rho = 0$, where the particular behavior of g is dominant. In the rest of the interval, the standard formula is applied. An appropriate switching point is $\rho = 0.25$, as found by numerical experiments.

In conclusion, the transformation $g = \sqrt{f} f$ simplifies the equation, eliminating the needs of an additional approximation, namely of the first derivative. Also, the treatment
of the point \(\rho = 0 \) is easier. When \(\Lambda \neq 0 \), the equation in \(f \) contains a singular term \((\Lambda^2 / \rho^2) \) and thus the origin should be avoided in the discretization and the value of \(f(0) \) cannot be obtained. Conversely, \(g(0) = 0 \), so that only the values \(g_j, j \geq 1 \) have to be calculated. The scalar product, of the form \(\int g_m^* g_n d\rho \), can be conveniently evaluated-no special procedure near the origin is required. So, in practice it is more advantageous to deal with the transformed equation, but the finite differences used in the discretization should be adapted to the induced behavior of the solution.

We implemented this experience in the discretization of the Hamiltonian in two dimensions. For the derivatives in \(\rho \) we have used adapted formulae, while the derivatives with respect to \(z \) are approximated by standard formulae. Note that, however, the Hamiltonian \(\hat{H} \) still contain first derivatives with respect to \(\rho \) (the Liouville transformation removes the derivatives only in the Laplacean part). These derivatives are approximated as well by adapted difference formulae, deducted likewise as those for second order derivatives. We have used the following formula, exact for the functions \(\rho^{\Lambda+1/2} \) and \(\rho^{\Lambda+5/2} \):

\[
g'_j \approx \frac{d_j g_{j+1} + e_j g_j - d_j g_{j-1}}{h}, \tag{3.11}
\]

where

\[
d_j = \frac{2}{j(v_j - u_j)}, \quad e_j = \frac{1}{j} \left(\Lambda + \frac{1}{2} - \frac{2u_j}{v_j - u_j} \right),
\]

with

\[
v_j = \left(1 + \frac{1}{j}\right)^{\Lambda+\frac{3}{2}} - \left(1 - \frac{1}{j}\right)^{\Lambda+\frac{3}{2}}, \quad u_j = \left(1 + \frac{1}{j}\right)^{\Lambda+\frac{3}{2}} - \left(1 - \frac{1}{j}\right)^{\Lambda+\frac{3}{2}}.
\]

Note that \(d_j \to 1/2, e_j \to 0 \), as \(j \to \infty \), i.e., the formula (3.11) approaches the standard one. When these adapted formulae are applied in the Hamiltonian \(\hat{H} \) approximation, one should use \(\Lambda = \Lambda_1 \) for \(g_1 \) and \(\Lambda = \Lambda_2 \) for \(g_2 \).
By discretization, the original eigenvalue problem is transformed to an algebraic eigenvalue problem, whose eigenvector is formed by the values of g_1 and g_2 at nodes. The matrix is sparse and contains the coefficients of derivative approximations, as well as the potential values at the mesh points. Its order is two times the number of nodes (at each point the solution has two components) and is usually large. To solve the resulting eigenvalue problem (of the form $Ax = \lambda x$) we have used the package ARPACK (see [15]) based on the Implicitly Restarted Arnoldi Method. It is able to efficiently find selected eigenpairs of a large sparse matrix. Thus only the portion of the spectrum with physical relevance is calculated. An important feature is that only the matrix-vector product Ax is needed. Hence, the matrix A should not be generated nor stored, which is a great advantage in computation, saving time and memory. The method is appropriate either for symmetric or nonsymmetric matrices, both for normal and generalized eigenvalue problem. Note that the matrix resulting by the discretization of \hat{H} is nonsymmetric, because of the finite difference approximation of the first derivatives. Its eigenvalues, calculated with the corresponding set from ARPACK, are however real, approximations of the true eigenvalues of the original Hamiltonian, which is self-adjoint for bound state conditions.

Let us note that the solution of the bi-dimensional stationary Schrödinger equation is also possible by other approaches, like the diagonalization in a complete basis (see, e.g., [8]), but the grid-based procedure with finite differences, in spite of requiring longer computer time, exhibits certain advantages. Among them, we mention the convenient and uniform treatment of any nuclear shapes, symmetric as well as non-symmetric and the possibility to use the same numerical approximations in the solution of the time-dependent Schrödinger equation, which ensures compatible initial wave functions (in the evolutive model they are eignsolutions of the stationary equation with a potential $V(\rho,z)$ for which deformation parameters correspond to the pre-scission nuclear shape) and accurate propagated solutions.

3.1 Solution of the eigenvalue problem

The Arnoldi procedure combines some features of QR and power methods and constructs eigenpairs of the large matrix A from the eigenpairs of a small matrix H. The power method begins with a random vector v_0 and constructs a sequence of vectors $v_1 = Av_0, \ldots, v_{k-1} = Av_{k-2}$. Let us consider the space generated by the vectors $v_0, Av_0, \ldots, A^{k-1}v_0$ (i.e., the set of linear combinations). We call it the k'th Krylov subspace and will denote it by $K_k(A, v_0)$. We define a Ritz pair as a pair (x_i, λ_i) that satisfies the Galerkin condition:

$$v^T(Ax_i - \lambda_i x_i) = 0, \quad \forall v \in K_k(A, v_0).$$

The k-step Arnoldi factorization of $A \in \mathbb{C}^{n \times n}$ is a relation of the form:

$$AV = V\hat{H} + f e_k^T,$$

where $V \in \mathbb{C}^{n \times k}$ has orthonormal columns, $V\hat{H}f = 0$, $\hat{H} \in \mathbb{C}^{k \times k}$ is upper Hessenberg with a non-negative subdiagonal and $\{e_j\}_{j=1}^n$ is the standard basis set for \mathbb{C}^n.
If \((y, \lambda)\) is an eigenpair of \(H\), since \(V^i f = 0\), it easily follows that \(\lambda\) is a Ritz value and \(x = V y\) a corresponding Ritz vector. We assume that \(k \ll n\) so that the eigenpairs of \(H\) can be computed by a conventional method.

Also, the following relation is satisfied:

\[
\|Ax - x\lambda\| = \|AVy - Vy\lambda\| = \| (AV - VH)y\| = \| fe_i^T y\| = \beta |e_i^T y|, \tag{3.12}
\]

where \(\|\cdot\|\) means the Euclidean norm and \(\beta = \|f\|\).

The process makes \(|e_i^T y| \to 0\), so that the Ritz pair \((x, \lambda)\) well approximates an eigenpair of \(A\). The Implicitly Restarted Arnoldi Method consists in a succession of Arnoldi factorizations and eigenvalue estimations using the QR method.

4 The scission neutrons investigation

4.1 Stationary approach

Firstly, we consider the scission as a sudden transition between two different nuclear configurations. Immediately-after-scission the neutrons are still characterized by their just-before-scission wave functions \(|\Psi_i\rangle\) but find themselves in the newly created potential of their interaction with the separated fragments. Their wave functions become wave packets with few positive-energy components. The probability to populate such unbound states gives the emission probability of a neutron that before scission has occupied the state \(|\Psi_i\rangle\):

\[
P_{em}^i = \sum_{\text{unbound states}} |a_{if}|^2, \tag{4.1a}
\]

\[a_{if} = \langle \Psi_i | \Psi_f \rangle = 2\pi \int (f_i^1 f_f^1 + f_i^2 f_f^2) \rho \, d\rho \, dz = 2\pi \int (g_i^1 g_f^1 + g_i^2 g_f^2) \, d\rho \, dz. \tag{4.1b}
\]

\(|\Psi_f\rangle\) are the immediately-after-scission eigenstates. From computational point of view it is more convenient to obtain the bound states than the continuum states. Therefore we have used:

\[
P_{em}^i = 1 - \sum_{\text{bound states}} |a_{if}|^2. \tag{4.2}
\]

Summing over all occupied states one obtains the total number of scission neutrons per fission event

\[\nu_{sc} = 2 \sum_i v_i^2 P_{em}^i. \tag{4.3}\]

The factor of 2 is due to the spin degeneracy (there are 2 neutrons on each level, corresponding to spin-up and spin-down). \(v_i^2\) is the ground-state occupation probability of \(|\Psi_i\rangle\). To obtain it one can consider the neutrons either independent or pairing correlated.
In the first case \(v_i^2 = 1 \) if the eigenenergy \(e_i \) is below some limit \(e_{\text{max}} \) (around Fermi level) and 0 otherwise (a step function). In the second case

\[
v_i^2 = \frac{1}{2} \left(1 - \frac{e_i - \lambda}{\sqrt{(e_i - \lambda)^2 + \Delta^2}} \right),
\]

(4.4)

with the parameters \(\Delta \) and \(\lambda \) deduced from the Bardeen-Cooper-Schrieffer (BCS) equations (see [16]):

\[
\sum_{i=n-n_c}^{n+n_c} \left((e_i - \lambda)^2 + \Delta^2 \right)^{-\frac{1}{2}} \frac{1}{\Delta} \ln \left(\frac{2\eta}{\Lambda} \right) = 0,
\]

(4.5)

with the constraint that the particle number \(N = 2\sum_i v_i^2 \) is conserved \((n = N/2)\). The two cutoff parameters \(n_c \) and \(\eta \) are connected by

\[
2\eta = 2n_c / \tilde{g}(\bar{\lambda}),
\]

where \(\tilde{g}(\bar{\lambda}) \) is the average level density at the Fermi energy. The smooth gap parameter

\[
\tilde{\Lambda} = 13.3 / \sqrt{A} \text{ MeV}
\]

was taken from the systematics of odd-even mass differences in nuclei throughout the periodic table (see [17]).

Using the eigenstates, other characteristics of the process can be obtained, as the primary fragments’ excitation energy and the spatial distribution of the emission points. Thus, the energy showing the degree of excitation in which the fragments are left is calculated from

\[
E_{\text{sc}}^\ast = 2 \sum_{\text{bound states}} (V_f^2 - v_f^2) e_f,
\]

(4.6)

where

\[
V_f^2 = \sum_i v_i^2 |a_{if}|^2
\]

(4.7)

is the occupation probability of the final state \(|\Psi_f\rangle\) after the sudden transition and \(e_f \) is the corresponding eigenenergy.

The spatial distribution of the emission points is a function of the variables \(\rho \) and \(z \) given by:

\[
S_{\text{em}}(\rho, z) = \sum_i v_i^2 |\Psi_{\text{em}}^i(\rho, z)|^2,
\]

(4.8)

where

\[
|\Psi_{\text{em}}^i\rangle = |\Psi^i\rangle - \sum_{\text{bound states}} a_{if} |\Psi_f\rangle
\]

(4.9)

is the part of the initial wave function that has been emitted.
The numerical evaluation of integral in Eq. (4.1b) is performed by the Simpson formula. With respect to \(\rho \) the formula is adapted as well to the special form of the solutions \(g_1, g_2 \). Thus, close to \(\rho = 0 \) we have used the following formula with variable coefficients:

\[
\frac{1}{2\Delta\rho} \int_{\rho_i}^{\rho_{i+2}} g(\rho) d\rho = \alpha_j g(\rho_j) + \beta_j g(\rho_{j+1}) + \gamma_j g(\rho_{j+2}).
\] (4.10)

The coefficients \(\alpha_j, \beta_j \) result from the condition that the formula (4.10) is exact for the functions \(\rho^{\Lambda+1/2} \) and \(\rho^{\Lambda+5/2} \). We have obtained:

\[
\alpha_j = \frac{1}{2\Lambda+7} \left[(j+2)^{\Lambda+\frac{7}{2}} - j^{\Lambda+\frac{7}{2}} \right] - \frac{(j+1)^{\Lambda+\frac{5}{2}}}{2\Lambda+3} \left[(j+2)^{\Lambda+\frac{5}{2}} - j^{\Lambda+\frac{5}{2}} \right],
\] (4.11a)

\[
\beta_j = \frac{1}{2\Lambda+3} \left[(j+2)^{\Lambda+\frac{3}{2}} - j^{\Lambda+\frac{3}{2}} \right] - \alpha_j \frac{(j+2)^{\Lambda+\frac{1}{2}} + j^{\Lambda+\frac{1}{2}}}{(j+1)^{\Lambda+\frac{1}{2}}}.\] (4.11b)

In the limit \(j \rightarrow \infty \), these coefficients tend to the constant coefficients of the standard Simpson formula, i.e., \(\alpha_j \rightarrow 1/6 \) and \(\beta_j \rightarrow 2/3 \).

Before the calculation of the coefficients \(a_{ij} \) (Eq. (4.1b)), the eigenfunctions provided by ARPACK are orthonormalized by the Gram-Schmidt algorithm in which the quadratures of the scalar product are done by the above described adapted Simpson formula.

We have applied the above formalism to study the emission of fission neutrons during the fission of \(^{236}U \). The numerical domain was: \(\rho \in [\Delta\rho, 32] \), \(z \in [-32, 32] \), while \(\Delta\rho = \Delta z = 1/8 \). Number of grid points: \(N \approx 1.3 \times 10^5 \). The two deformations between which the sudden transition is supposed to occur are characterized by the parameters \(\varepsilon_i = 0.985 \) and \(\varepsilon_f = 1.001 \) in the Cassini description of the nuclear shapes. The first value corresponds to a configuration with two fragments connected by a neck, while the second corresponds to separated fragments. The chosen values are in agreement with theoretical predictions for the minimum value of the neck radius (see [18]). The fission can be symmetric (each fragment has the mass 118) or, more frequently, asymmetric. As an example we present the case when one of the fragments has the mass \(A_L = 86 \). Depending of this mass and of \(\varepsilon \) one more deformation parameter \((\alpha_1) \) is obtained. It is adjusted such that the ratio of the volumes of the two fragments is equal to the ratio of the two masses \(A_H/A_L \). An idea of the shapes involved is given by the equipotential lines corresponding to \(V_0/2 \), \(V_0 = 40.22 \) MeV being the depth of the nuclear potential (see Fig. 1, where the values of these parameters are also mentioned).

For \(\Omega = 1/2 \), there are 41 bound states for the initial configuration and 41 for the final one. For \(\Omega = 3/2 \) there are 27 states, 18 states for \(\Omega = 5/2 \), 9 states for \(\Omega = 7/2 \), 5 states for \(\Omega = 9/2 \) and 2 states for \(\Omega = 11/2 \). In the Table 2 we give the scission neutron multiplicity and the excitation energy (in MeV) at each \(\Omega \) for the light fragment mass \(A_L = 86 \). For the occupation probabilities we have considered the particles independent (IP), in which case a step function is used and also correlated (PC), in which case the BCS parameters are used.
Figure 1: Equipotential lines corresponding to half of the depth of the nuclear potential at initial and final deformations.

Table 2: SN multiplicity and excitation energy for $A_L = 86$ at each Ω.

<table>
<thead>
<tr>
<th>Ω</th>
<th>ν_{sc}-IP</th>
<th>ν_{sc}-PC</th>
<th>E_{sc}-IP</th>
<th>E_{sc}-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0.51734</td>
<td>0.47571</td>
<td>6.59002</td>
<td>3.00898</td>
</tr>
<tr>
<td>3/2</td>
<td>0.12290</td>
<td>0.14288</td>
<td>3.36928</td>
<td>2.91752</td>
</tr>
<tr>
<td>5/2</td>
<td>0.12235D-01</td>
<td>0.29941D-01</td>
<td>1.39202</td>
<td>2.24470</td>
</tr>
<tr>
<td>7/2</td>
<td>0.62626D-01</td>
<td>0.56349D-01</td>
<td>0.60892</td>
<td>1.25476</td>
</tr>
<tr>
<td>9/2</td>
<td>0.15587D-02</td>
<td>0.57264D-02</td>
<td>0.10724</td>
<td>1.50310</td>
</tr>
<tr>
<td>11/2</td>
<td>0.50968D-03</td>
<td>0.60584D-03</td>
<td>0.04671</td>
<td>0.13044</td>
</tr>
<tr>
<td>Sum</td>
<td>0.71716</td>
<td>0.71121</td>
<td>12.11418</td>
<td>11.05949</td>
</tr>
</tbody>
</table>

Table 3: SN multiplicity and excitation energy for $A_L = 86$, $\Omega = 5/2$.

<table>
<thead>
<tr>
<th>$\Delta \rho, \Delta z$</th>
<th>ν_{sc}-IP</th>
<th>E_{sc}-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0.012235</td>
<td>1.39202</td>
</tr>
<tr>
<td>1/16</td>
<td>0.012223</td>
<td>1.39198</td>
</tr>
</tbody>
</table>

To verify the dependence of the results on the step size we have calculated for one case ($A_L = 86$, $\Omega = 5/2$ and Independent Particles probabilities) with a step size 2 times smaller ($\Delta \rho = \Delta z = 1/16$). The results are presented in the Table 3.

As one can see, the relative difference is less than 10^{-3}.

In Fig. 2 the spatial distributions of the emission points for $A_L = 86$ (mass asymmetry) and for $A_L = 118$ (mass symmetry) are shown (as functions of ρ and z, defined by Eq. (4.8)). The contributions from all Ω’s between 1/2 and 11/2 have been taken into account. The BCS probability parameters have been used.
Figure 2: The distribution of the emission points at asymmetric \(A_L = 86 \) and symmetric fission \(A_L = 118 \).

In the used representation by contour lines, the dark regions correspond to the maximum values and one can see that the emission points are concentrated around the neck. To identify its place, we added in each figure the equipotential lines corresponding to \(V_0/2 \) before and after scission.

In fact, we have obtained the scission neutron multiplicity and the excitation energy for a set of light fragment masses \(A_L \) equally distributed in the range [70,118]. In the case of mass symmetry, the results have been compared with those corresponding to the wave

Figure 3: Scission neutron multiplicity with sudden and time-dependent approximation.

Figure 4: Primary fragments’ excitation energy with sudden and time-dependent approximation.
functions obtained by diagonalization in a deformed oscillator basis, a good agreement
being observed (see [8]). The finite difference approach allows however the study of a
larger variety of configurations, including mass asymmetries. Both types of occupation
probability calculations have been used: step function and BCS. In a previous attempt
to estimate the multiplicities and the energies, we have used fixed values of probability
parameters (corresponding to \(A_L = 118 \)) for all fragment masses (see [10]). Now, we have
determined these parameters for each mass ratio and we have used them in the present
evaluation. This improvement produces more accurate predictions.

For each \(A_L \) we have considered several values of the projection of the total angular
momentum along the symmetry axis: \(\Omega = \frac{1}{2}, \frac{3}{2}, \cdots, \frac{11}{2} \). Note that the number of
bound states decreases as \(\Omega \) increases. The variation of the quantities \(\nu_{sc} \) and \(E^*_{sc} \) are
represented in the Figs. 3 and 4 along with time-dependent results (see next section).

A direct comparison of the calculated scission-neutron multiplicity with the measure-
ments is not possible at this moment since the separation of the scission and post-
acceleration components of the prompt neutron experimental data has not been done so
far. It is however interesting to note that, although the absolute values are different (the
scission neutrons representing only 30\% of the total prompt neutrons), the oscillations
present in calculations (Fig. 3) resemble those observed experimentally [19]. The same is
valid for the primary-fragments’ excitation energy in Fig. 4: although it represents only a
part of the total excitation energy (the other part being the extra-deformation energy), its
relative variation with \(A_L \) follows roughly the experimental total excitation energy [19].

4.2 Time dependent model

An alternative approach is to consider the fission as a time dependent fast (diabatic)
process. This implies the resolution of the bi-dimensional time-dependent Schrödinger
equation-TDSE. The wave functions before scission are propagated during a temporal
interval \([0,T]\). The potential is also time dependent, its deformation parameters changing
during propagation. The moment \(t = 0 \) corresponds to \(\epsilon = 0.985 \), while \(t = T \) corresponds to
\(\epsilon = 1.001 \). Then the propagated functions are used instead \(\Psi^i \) in the previous calculations.
Thus, the physical quantities are evaluated in a more realistic model, since the scission is
in reality not a sudden process, but takes some time (short but not zero).

Practically, we consider a time step \(\Delta t \) and advance in time a number \(N \) of steps by
numerically solving at each step the time-dependent Schrödinger equation \((T = N\Delta t)\). As
initial solution one takes each \(\Psi^i \). TDSE has the form

\[
\frac{i\hbar}{\partial t} \frac{\partial \Psi(\rho,z,t)}{\partial t} = \hat{H}(\rho,z,t)\Psi(\rho,z,t).
\]

Expanding \(\hat{H} \) in Taylor series with respect to \(t \) and retaining the first two terms, the
formal solution of (4.12) can be written as (since only the potential \(V \) depends on \(t \)):

\[
\Psi(t + \Delta t) = e^{-\frac{i}{\hbar}\int_{t}^{t+\Delta t} \hat{H}(t')dt'} \Psi(t).
\]
Using the approximation \(e^x \approx \frac{1 + x}{1 - x/2} \) (Padé of order \([1,1]\)) we obtain the relation (of Crank-Nicolson type-CN):

\[
\left(1 + \frac{i\Delta t}{2h} \hat{H} + \frac{i\Delta t^2}{4h} V' \right) \Psi(t + \Delta t) = \left(1 - \frac{i\Delta t}{2h} \hat{H} - \frac{i\Delta t^2}{4h} V' \right) \Psi(t).
\]

We consider the same grid as before. Let us denote \(g_{jk}^{(n)} \) the approximation of \(g \) in the point \((\rho_j, z_k)\) and at time \(t_n = n\Delta t \), where \(g \) is any of \(g_1 \) and \(g_2 \). The solution at time \(t_{n+1} \), represented by the values \(g_{jk}^{(n+1)} \), is obtained in terms of the solution at time \(t_n \), on the basis of the above CN scheme, which turns into a linear system, after the approximation of the partial derivatives appearing in \(\hat{H} \) by the same finite differences formula used in the stationary equation. The matrix of the system is typically large and sparse. The direct methods for solving (like Gauss) are inadequate, since they require too much computer memory. We have chosen an iterative method, namely the gradient method. The attractiveness of this method for large sparse systems is that it references the system matrix only through its multiplication by a vector, thus avoiding the storage of the matrix.

Given the system \(Ax = b \) of order \(M \), the idea is to minimize the function

\[
h(x) = \frac{1}{2} x A x - b x.
\]

This function is minimized when its gradient \(\nabla h = Ax - b \) is zero, which is equivalent to the original system. The minimization is carried out by generating a succession of vectors \(p_k \) and \(x_k \). At each stage a quantity \(\alpha_k \) is found that minimizes \(h(x_k + \alpha_k p_k) \) and the iteration \(x_{k+1} \) is set equal to \(x_k + \alpha_k p_k \). One of the most efficient variants is the biconjugate gradient method (see [20]).

We note that the method works well for well-conditioned matrices, i.e., "close" to the identity matrix. This suggests applying this method to the preconditioned form of the equation

\[
Ax = b : (\tilde{A}^{-1} A)x = \tilde{A}^{-1} b.
\]

It is supposed that the system with the matrix \(\tilde{A} \) can be easily solved. If \(\tilde{A} \) is close to \(A \) so that \(\tilde{A}^{-1} A \approx I \) the conjugate gradient algorithm will converge fast. There are several algorithms to construct preconditioners, as the Incomplete LU Factorization and the Block Jacobi, whose description can be found in [21].

The method is applied until some convergence condition is satisfied, like

\[
\frac{||Ax - b||}{||b||} \leq \epsilon.
\]

In practice we have used a subroutine based on this method adapted to complex systems (see [22]).
4.2.1 Artificial boundary conditions

To numerically solve the Schrödinger equation, the unbound physical domain should be truncated to a finite region. The conditions on the boundaries of this computational domain require a special treatment to avoid the reflexions which affect the propagated wave function and lead to errors in the calculation of the physical quantities. One possibility is to extend enough the limits of the domain and to use null values at boundaries. If the wavefunction is practically confined in a reduced area, the size of the computational domain is reasonable. Otherwise, it becomes too large and the huge number of resulting grid points generates difficulties in computer solution. Other techniques should be used in such cases, which allow reduced sizes of the numerical domain. Among them, we mention the Transparent Boundary Conditions (TBC) and the Absorbing Boundary Conditions (ABC) (see, e.g., [23–25]).

For our problem, a quite simple variant of TBC has been implemented, with satisfactory efficiency. The idea is to assume near the boundary \(r_B \) the following form of the solution: \(g = g_0 \exp(ik,r) \), where \(g_0 \) and \(k_r \) are complex constants (a 1D notation was used). Then, at the moment \(t_n = n\Delta t \), we have the relations

\[
\frac{g_{B+1}^n}{g_B^n} = \frac{g_B^n}{g_{B-1}^n} = \exp(i k_r \Delta r).
\]

The second equality gives \(k_r \), which is eventually adjusted so that to ensure a nonnegative flux, i.e., non radiative wave can enter in the numerical domain. The flux at the boundary has the form:

\[
F(r_B) = \frac{\hbar}{m} \Re(k_r)|g_B|^2,
\]

where \(\Re \) is the real part of \(k_r \). If \(F(r_B) < 0 \), \(\Re(k_r) \) is set to zero. Then \(g_{B+1}^n \) is expressed in terms of \(g_B^n \). Supposing the same relation valid for the next time step, we obtain:

\[
g_{B+1}^{n+1} = g_B^{n+1} \exp(i k_r \Delta r).
\]

These linear relations are used in the finite difference formulae for the derivatives at \(r_B \), when the CN scheme is applied. One can see that \(k_r \) is changing as the problem progresses.

In two spatial dimensions, this algorithm should be used at each point of the grid belonging to boundaries. Of course, \(k_r \) depends on the considered point.

4.3 Time dependent approach versus sudden approximation

In the Table 4 we present scission neutron (SN) multiplicities and excitation energies (in MeV) obtained for different time intervals \(T \) at \(A_L = 86 \). We have used a time step \(\Delta t = 1/256 \) (in units of \(10^{-22} \)s), such that \(T = 1/2, 1, 4 \times 10^{-22} \)s correspond respectively to 128, 256, 1024 time steps. \(T = 0 \) means sudden approximation.

In order to check the convergence with respect with \(\Delta t \) we repeated the calculations at \(A_L = 86 \) and \(T = 1 \) using a time step 2 times smaller, i.e., \(\Delta t = 1/512 \). In the Table 5, we summarize the results.
Table 4: SN multiplicity and excitation energy for $A_L = 86$ at different T.

<table>
<thead>
<tr>
<th>T</th>
<th>v_{sc}-IP</th>
<th>v_{sc}-PC</th>
<th>E_{sc}-IP</th>
<th>E_{sc}-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.71716</td>
<td>0.71121</td>
<td>12.11418</td>
<td>11.05949</td>
</tr>
<tr>
<td>1/2</td>
<td>0.67652</td>
<td>0.67068</td>
<td>11.60120</td>
<td>10.54842</td>
</tr>
<tr>
<td>1</td>
<td>0.59526</td>
<td>0.59102</td>
<td>10.52238</td>
<td>9.39298</td>
</tr>
<tr>
<td>4</td>
<td>0.12590</td>
<td>0.12976</td>
<td>3.03274</td>
<td>2.07814</td>
</tr>
</tbody>
</table>

Table 5: Multiplicities and energies at $A_L = 86$, $T = 1$ with different Δt.

<table>
<thead>
<tr>
<th>Δt</th>
<th>v_{sc}-IP</th>
<th>v_{sc}-PC</th>
<th>E_{sc}-IP</th>
<th>E_{sc}-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/256</td>
<td>0.59526</td>
<td>0.59102</td>
<td>10.52238</td>
<td>9.39298</td>
</tr>
<tr>
<td>1/512</td>
<td>0.59524</td>
<td>0.59038</td>
<td>10.52308</td>
<td>9.41980</td>
</tr>
</tbody>
</table>

The agreement is quite good, especially for the Independent Particles case (the first 4 digits conserved). For this kind of nuclear calculations such an accuracy is sufficient.

In Figs. 3 and 4 we have added, respectively, the scission neutron multiplicities and the excitation energies-in MeV obtained with $N = 256$ time steps (which corresponds to $T = 1 \times 10^{-22}$ s) for $\Omega = 1/2, \cdots, 11/2$ and different $A_L \in [70, 118]$. A comparison with the sudden approximation ($N = 0, T = 0$) is thus possible.

One can see that the values of v_{sc} and E_{sc}^* decrease when T increases (the sudden approximation is an upper limit). The results are quite relevant for the variation of these quantities with the time. The duration of the scission process is not well known. We presented data at $T = 1 \times 10^{-22}$ s for a complete set of mass asymmetries and an example of longer (4×10^{-22} s) and shorter ($1/2 \times 10^{-22}$ s) time intervals for one mass asymmetry ($A_L = 86$).

5 Conclusions

In order to numerically describe the emission of scission neutrons from fissioning nuclei we have used both the sudden approximation and a time dependent approach. This implies the solution of the bi-dimensional Schrödinger equation (BDSE), both stationary and time-dependent. Applying adequate procedures, which include Liouville transformation and special finite differences adapted to the solution behavior, we were able to determine physical quantities like neutron multiplicity and fragments’ excitation energy. The neutrons were considered independent as well as pairing correlated. These two assumptions give rather close results. Of course, the occupation probabilities given by the BCS function, which takes into account the pairing correlations, are expected to be more realistic. The time-dependent approach is closer to the physical situation, but requires more calculations. If the duration of scission is short (of order $1/2 \times 10^{-22}$ s) the sudden approximation is acceptable, but normally this time is longer (of order 10^{-22} s) and the
time-dependent approach should be applied. Calculations of this type for a large series of fissioning nuclei can contribute to an improved estimation and characterization of neutrons emitted during the nuclear fission. Note finally that the solution of BDSE is also of interest in other research fields, like chemical physics or laser physics.

Acknowledgments

This work was supported by the contracts PNCDI2-Parteneriate 71-112 and PN09370102 of the Romanian Ministry of Education and Research.

References

