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Abstract. This paper focuses on the development of an efficient, three-dimensional,
thermo-mechanical, nonlinear-Stokes flow computational model for ice sheet simula-
tion. The model is based on the parallel finite element model developed in [14] which
features high-order accurate finite element discretizations on variable resolution grids.
Here, we add an improved iterative solution method for treating the nonlinearity of the
Stokes problem, a new high-order accurate finite element solver for the temperature
equation, and a new conservative finite volume solver for handling mass conservation.
The result is an accurate and efficient numerical model for thermo-mechanical glacier
and ice-sheet simulations. We demonstrate the improved efficiency of the Stokes solver
using the ISMIP-HOM Benchmark experiments and a realistic test case for the Green-
land ice-sheet. We also apply our model to the EISMINT-II benchmark experiments
and demonstrate stable thermo-mechanical ice sheet evolution on both structured and
unstructured meshes. Notably, we find no evidence for the “cold spoke” instabilities
observed for these same experiments when using finite difference, shallow-ice approx-
imation models on structured grids.
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1 Introduction

During the past five years, there has been a concerted effort towards the development of
improved numerical and computational models for glaciers and ice sheets. This is due to
renewed concerns about the potential for future sea-level rise from land-ice melting [1–3]
and to deficiencies in existing land-ice models, as highlighted by the last assessment re-
port of the Intergovernmental Panel on Climate Change [32, 33]. A primary deficiency
of the land-ice models used in that report was the simplified treatment of the ice-sheet
dynamics which governs the three-dimensional velocity field within the ice. For glaciers
and ice sheets, dynamical behavior is most completely and accurately described by a
nonlinear Stokes system; recent papers [13, 14, 36] have reported the numerical and com-
putational treatment of such models.

In [14], we reported on a new, nonlinear Stokes computational model, which used
high-order accurate finite element methods on unstructured, variable resolution meshes.
That work concentrated solely on the efficient and accurate parallel-computational solu-
tion of the Stokes momentum balance equations. Here, we mainly focus on important
improvements in numerical approximations and solvers to that basically same computa-
tional model in order to make it more efficient and useful for practical science applica-
tions, in particular the simulation of large-scale, thermo-mechanically coupled ice-sheet
evolution.

The remainder of this paper is organized as follows. In Section 2, we present the gov-
erning equations for ice-sheet dynamics and evolution of ice temperature and thickness
in the Stokes thermo-mechanical model for simulating ice-sheet flow. Their numerical
approximations and consequent solution techniques are then presented in Section 3. In
Section 4, we test our computational model using standard diagnostic and prognostic ex-
periments and compare our results with those from some previous models. Concluding
remarks follow in Section 5.

2 The Stokes thermo-mechanical model for ice-sheet flow

The three-dimensional, thermo-mechanical Stokes ice-sheet model consists of three cou-
pled components: the diagnostic, nonlinear Stokes equations governing the flow dynam-
ics (conservation of momentum), the prognostic equation describing the evolution of the
ice temperature, and the prognostic equation determining changes in the ice-sheet geom-
etry (conservation of mass). See, e.g., [11,13,14,16,35,36], for additional details concerning
the model we consider here.

Let [0,tmax] denote the time interval of interest and Ωt the three-dimensional, time-
varying spatial domain occupied by the ice sheet. The dynamic behavior of the ice-sheet
is modeled by the Stokes equations for an incompressible, power-law viscous fluid in a
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low-Reynolds number flow,

−∇·σ=ρg, in [0,tmax]×Ωt, (2.1a)

∇·u=0, in [0,tmax]×Ωt, (2.1b)

where u = (u,v,w) denotes the velocity vector, σ the stress tensor, ρ the (constant and
uniform) ice density, and g the gravitational acceleration.†

The stress tensor can be split into a deviatoric part and an isotropic pressure as

σ=τ−pI, (2.2)

where p =− 1
3 trace(σ). The constitutive equation for ice links the deviatoric stress τ to

the strain rate ε̇u = 1
2(∇u+∇uT) by Glen’s flow law [19, 21], which can be written in

Newtonian form as
τ=2ηε̇u. (2.3)

In (2.3), η denotes the strain-rate and temperature dependent effective viscosity coeffi-
cient defined by

η=
1

2
A−1/nǫ

(1−n)/n
u , (2.4)

where n is usually taken as 3 for isotropic ice, A is the deformation rate factor, and ǫu is
the effective strain rate defined as

ǫu =
(1

2
ε̇u : ε̇u

)1/2
=
(1

2
((ε̇u)

2
11+(ε̇u)

2
22+(ε̇u)

2
33)+(ε̇u)

2
12+(ε̇u)

2
23+(ε̇u)

2
31

)1/2
. (2.5)

The deformation rate factor A depends on the temperature and pressure, and possibly
on other properties such as ice-crystal size and orientation and impurity content [21].
Following previous work [20], we assume that A depends only on temperature and obeys
an Arrhenius relation defined by

A=A(T)= aexp

(
−Q

RT

)
, (2.6)

where a is an empirical constant often used as a tuning parameter, Q denotes the activa-
tion energy, R the universal gas constant, and T the absolute temperature measured in
degrees Kelvin.

The ice sheet domain Ωt at time t is defined as

Ωt=
{
(x,y,z) | b(x,y)< z< s(x,y,t), for (x,y)∈ΩH , t∈ [0,tmax]

}
,

where ΩH denotes the horizontal domain of interest that covers the horizontal extent
of the ice sheet, s(x,y,t) defines the top surface elevation, and b(x,y) defines the bed

†Note that because the ice velocity is small and temporal changes in the velocity are slower that those of
the temperature, that, as is generally accepted, the inertial terms in the Navier-Stokes equations have been
neglected to obtain (2.1a).
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elevation. Here, b(x,y) is assumed to be fixed with respect to time, i.e., neither isostatic
rebound nor erosion are considered.

At the top surface of the ice-sheet Γs, we impose the stress continuity boundary con-
dition

σ·n=−patm ·n on Γs, (2.7)

where n denotes the outer unit normal at the ice-sheet surface and patm the atmospheric
pressure. Because atmospheric pressure is negligible relative to pressure within the ice
column, we make the standard simplification that patm=0 so that (2.7) reduces to a stress
free boundary condition.

The bottom surface Γb of the ice-sheet can be decomposed into two parts, Γb, f ix at
which the ice sheet is fixed to the bottom bedrock and Γb,sld at which the ice sheet is
allowed to slide; on both parts, a non-penetration condition on the velocity is applied.
Specifically, on the fixed part of the basal boundary we apply a zero-velocity boundary
condition

u=0 on Γb, f ix (2.8)

and, on the sliding part, we apply a Rayleigh friction boundary condition

u·n=0 and n·σ·t=−β2u·t on Γb,sld, (2.9)

where β2 is a given positive definite coefficient‡ and t is any unit vector tangential to the
bottom surface.

Along the lateral boundary Γℓ, we impose for different settings one of three types of
boundary conditions, depending on the physical domain boundary or benchmark do-
main boundary under consideration: a stress-free condition σ ·n = 0 or a zero-velocity
condition u=0 or periodic boundary conditions.

The governing equation for the temperature in the ice sheet is given by

ρc
∂T

∂t
+ρcu·∇T=∇·(κ∇T)+2ηε̇u : ε̇u in [0,tmax]×Ωt, (2.10)

where c and κ denote the specific heat capacity and thermal conductivity of ice, respec-
tively. These and the other thermal parameters used in our study are assumed to be
independent of ice temperature because they are weak linear functions of temperature
over the range expected in ice sheets. In (2.10), non-steady and advective changes in tem-
perature (the first and second terms on the left-hand side, respectively) are balanced by
temperature diffusion and internal strain rate heating (the first and second terms on the
right-hand side, respectively).

The boundary conditions at the bottom and top surfaces Γb and Γs of the ice sheet are
given by

∂T

∂n

∣∣∣
Γb

=−
G

κ
and T|Γs =Tsurf, (2.11)

‡For realistic simulations, the value of β2 may be vary in space and times, for example, as a function of the
type of basal substrate, the presence, absence or pressure of subglacial water, etc.
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where n is the outer unit normal on the ice sheet bottom surface, G is the geothermal heat
flux along the bottom surface and Tsurf is the mean annual temperature field along the
top surface. Another possible source could be added to (2.11) is the heating at the bed
due to friction which is given by the basal traction vector dotted with the basal sliding
vector, but it is often negligible because essentially realistic ice-sheet flows are slow and
the major water lubrication is largely controlled by Moulins.

If the ice temperature reaches the melting point, the ice sheet will melt down and leads
to mass loss. However, for simplicity the melting model is not included here and the
evolving temperature is assumed to be constrained so that it cannot exceed the pressure-
melting temperature T′ with

T′=T0−γ(s−z), (2.12)

where γ is the Clausius-Clapeyron gradient which defines the melting point dependence
on pressure.

The ice-sheet geometry evolution equation, derived from local mass-conservation, is
given by

∂H

∂t
=−∇·(uH)+m in [0,tmax]×ΩH, (2.13)

where H = s−b denotes the ice thickness, u is the vertically averaged velocity, and m
denotes a source/sink term resulting from the ice sheet surface mass balance (i.e., climate
driven accumulation or melting of ice) and basal mass balance (i.e., melting or freezing
of ice at the ice-bedrock interface).

Table 1 lists the values of the physical constants and parameters used in the compu-
tational experiments.

Table 1: Model parameters and physical constants used in the experiments of the Stokes ice-sheet model.

Symbol Constant Value Unit

ρ Density of ice 910 kgm−3

g Acceleration due to gravity 9.81 ms−2

n Power in Glen’s law 3 -

T0 Triple point of water 273.15 K

G Geothermal heat flux 4.2 x 10−2 Wm−2

k Thermal conductivity of ice 2.1 Wm−1K−1

c Specific heat capacity of ice 2009 Jkg−1K−1

γ Clausius-Clapeyron gradient 8.66 x 10−4 K m−1

a Tuning parameter 3.61×10−13 if T<263.15K Pa−3s−1

1.73×10−13 if T≥263.15K

Q Activation energy 6.0×104 if T<263.15K Jmol−1

13.9×104 if T≥263.15K

R Gas constant 8.314 Jmol−1K−1

Seconds per year 31556926
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3 Numerical discretizations and solution techniques

3.1 The Picard-Newton finite element Stokes solver for ice-sheet dynamics

Let Th denote a three-dimensional layered tetrahedral triangulation of the ice-sheet do-
main Ωt; in particular, we use the grids described in [14]. Let P1,h(Th) and P2,h(Th) denote
the continuous piecewise-linear and quadratic polynomial finite element spaces (also
called the Taylor-Hood element pair), respectively, defined with respect to the tetrahe-
dral grid. Define P̃2,h as

P̃2,h(Th)=
{

uh∈ (P2,h(Th))
3 |uh|Γl∪Γb, f ix

=0, (uh ·n)|Γb,sld
=0

}
. (3.1)

Then, a finite element discretization of the Stokes problem is defined as follows: given Ωt

and Th, seek uh∈ P̃2,h(Th) and ph ∈P1,h(Th) such that




∫

Ωt

2ηuh
ε̇uh

: ε̇vh
dx+

∫

Γb,sld

β2uh ·vh ds−
∫

Ωt

ph∇·vh dx=ρ
∫

Ωt

g·vh dx,

−
∫

Ωt

qh∇·uh dx=0,
(3.2)

for all test functions vh ∈ P̃2,h(Th) and qh ∈ P1,h(Th). Due to the dependence of η on the
approximate velocity uh, (3.2) is a nonlinear system of equations for the approximate
velocity uh and approximate pressure ph.

We use a hybrid Picard-Newton iterative algorithm to solve the nonlinear system
(3.2). The Picard iteration is robust with respect to the initial guess for the solution, but is
at best linearly convergent for solving the nonlinear finite element Stokes system. Thus,
it is time consuming for long-time and large-spatial scale simulations in practical appli-
cations, such as decades to century scale, whole-ice sheet simulations of Greenland and
Antarctica. Newton-based nonlinear iterative solvers are putatively quadratically con-
vergent but are much less robust with respect to the initial solution guess. Our approach
is to first run the Picard iteration for a few steps to provide a good initial guess for the
Newton iteration, which then takes over until the solution converges. This hybrid ap-
proach provides a powerful and efficient tool for solving the nonlinear Stokes system.

The Picard iteration simply lags the velocity-dependent viscosity ηuh
in (3.2), i.e., at

any nonlinear iteration, ηuh
is evaluated using the approximate velocity solution obtained

at the end of the previous nonlinear iteration. Thus, starting with an initial guess u
(0)
h for

the velocity (which is often taken to be u
(0)
h = 0 in which case ηu0

h
is set to be a certain

positive constant), we have for j=1,2,··· , that u
(j)
h and p

(j)
h are determined by solving the

linear system of algebraic equations




∫

Ωt

2η
u
(j−1)
h

ε̇
u
(j)
h

: ε̇vh
dx+

∫

Γb,sld

β2u
(j)
h ·vh ds−

∫

Ωt

p
(j)
h ∇·vh dx=ρ

∫

Ωt

g·vh dx,

−
∫

Ωt

qh∇·u
(j)
h dx=0.

(3.3)
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Newton’s method requires computation of both the residual and the Jacobian of the
nonlinear system (3.2). Because the nonlinear term of (3.2) arises from the term

∫
Ωt

τuh
:

ε̇vh
dx with τuh

= 2ηuh
ε̇uh

, we only need compute the Jacobian of this term. Let δ( f (u))
denotes the change of f (u) with respect to δu (the change of u). We then find that

δ(τu)=δ
(

A−1/3ǫ−2/3
u ε̇u

)

=A−1/3
(

ǫ−2/3
u δ(ε̇u)+ ε̇uδ(ǫ−2/3

u )
)

(3.4)

and

δ(ǫ−2/3
u )=δ

((1

2
ε̇u : ε̇u

)−1/3
)

=−
1

3

(1

2
ε̇u : ε̇u

)−4/3(
∑
ij

(ε̇u)ij(δε̇u)ij

)

=−
1

3
ǫ−2/3

u ǫ−2
u

(
∑
ij

(ε̇u)ij(δε̇u)ij

)
. (3.5)

Consequently we have

δ(τu)=A−1/3ǫ−2/3
u

(
δ(ε̇u)−

2

3

1

(2ǫ2
u)

(
∑
ij

(ε̇u)ij(δε̇u)ij

)
ε̇u

)
(3.6)

and the Jacobian of
∫

Ωt
τu : ε̇v dx is given by

∫

Ωt

A−1/3ǫ−2/3
u

(
δε̇u

δu
−

2

3

1

(2ǫ2
u)

(
∑
ij

(ε̇u)ij

(δε̇u)ij

δu

)
ε̇u

)
: ε̇v dx. (3.7)

Thus, the variational problem for the Newton method is to seek δuh ∈ P̃2,h(Th) and
δph ∈P1,h(Th) such that





∫

Ωt

A−1/3ǫ−2/3

u
(j−1)
h

(
ε̇δuh

−
2

3

1(
2ǫ2

u
(j−1)
h

) (ε̇δuh
: ε̇

u
(j−1)
h

)ε̇
u
(j−1)
h

)
: ε̇vh

dx

+
∫

Γb,sld

β2δuh ·vh ds−
∫

Ωt

δph∇·vh dx=−Res
(j−1)
u ,

−
∫

Ωt

qh∇·δuh dx=−Res
(j−1)
p ,

(3.8)

for all vh∈ P̃2,h(Th) and qh∈P1,h(Th), where Res
(j−1)
u and Res

(j−1)
p are the residuals of (3.2)

for the approximations u
(j−1)
h and p

(j−1)
h , respectively. Given the solution of (3.8), the
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approximate solution at the jth step of the Newton method is given by u
(j)
h =u

(j−1)
h +δuh

and p
(j)
h = p

(j−1)
h +δph.

The diffusion part of the variational problem (3.8) is still coercive if the viscosity from
the last step, ǫ

u
(j−1)
h

, has an upper bound on Ωt. We can show this by setting vh=δuh=w,

and use the Cauchy-Schwarz inequality to obtain

∫

Ωt

A−1/3ǫ−2/3

u
(j−1)
h


ε̇w−

2

3

1

(2ǫ2

u
(j−1)
h

)
(ε̇w : ε̇

u
(j−1)
h

)ε̇
u
(j−1)
h


 : ε̇w dx

=
∫

Ωt

A−1/3ǫ−2/3

u
(j−1)
h


ε̇w : ε̇w−

2

3

1

(2ǫ2

u
(j−1)
h

)
(ε̇

u
(j−1)
h

: ε̇w)
2


 dx

≥
∫

Ωt

A−1/3ǫ−2/3

u
(j−1)
h


ε̇w : ε̇w−

2

3

(2ǫ2

u
(j−1)
h

)

(2ǫ2

u
(j−1)
h

)
(ε̇w : ε̇w)


 dx

=
1

3

∫

Ωt

A−1/3ǫ−2/3

u
(j−1)
h

(ε̇w : ε̇w) dx

≥ c||w||1,Ωt
(3.9)

for some constant c>0.
Both the Picard and Newton methods produce, at each step, the linear finite element

problems (3.3) and (3.8), respectively, which are symmetric saddle-point problems. The
development of an efficient linear solver for such algebraic systems is described in [14], a
block preconditioner is constructed to precondition the FGMRES iteration, and the sub-
problem for the velocity in the block preconditioner is approximately solved by the alge-
braic multi-grid method.

3.2 The finite element ice-sheet temperature evolution solver

When solving the temperature equation (2.10), which is a typical advection-diffusion
problem, a few difficulties arise. For example, (i) the problem is advection-dominated in
the horizontal directions and (ii) the melting point constraint (2.12) needs to be satisfied
throughout the three-dimensional temperature field. We use the SUPG-FEM (Streamline
Upwind Petrov-Galerkin Finite Element Method) [6] to stabilize the numerical scheme.

A weak formulation of (2.10) is defined as follows: seek Th∈P3,h(Th) satisfying Th|Γs=
Tsurf,h

∫

Ωt

(
ρc

∂Th

∂t
φh+ρcuh ·∇Thφh+κ∇Th ·∇φh+µρc(uh ·∇Th)(uh ·∇φh)

)
dx

=
∫

Ωt

2ηuh ,Th
ε̇uh

: ε̇uh
φh dx (3.10)
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for all test functions φh∈P3,h(Th) and φh|Γs =0, where Tsurf,h is an approximation, e.g., an
interpolant, of the given surface temperature field Tsurf and the stabilization parameter µ
is set to be µ= h/(2‖uh‖) with h chosen locally as the diameter of the tetrahedron and
‖uh‖ the L2 norm with respect to the tetrahedron. We use cubic finite element temper-
ature approximations here because we found that, for the same cost (i.e., for the same
number of degrees of freedom), quadratic approximations sometimes yield noticeable
poorer results, e.g., they display numerical oscillations at the bottom of ice sheet in some
of the tests presented in Section 4. Note this was not the case for velocity approximations
for which quadratic approximations are entirely reliable. The melting point constraint
(2.12) is treated using the nonlinear iterative method given in [36].

3.3 The finite volume ice-sheet thickness evolution solver

Let QH denote the two-dimensional triangulation of the horizontal extent ΩH of the ice-
sheet. For each vertex vi of QH , we build a patch around vi by combining all triangles
that have vi as a vertex, then extend the two-dimensional patch in the vertical direction to
create a volumetric patch Pi in the tetrahedral mesh Th. Then, the explicit, vertex-based
finite volume scheme for updating the ice thickness is given by

(Hn+1
i −Hn

i )Si

∆t
=∑

j

Fn
j +miSi, (3.11)

where Hn
i denotes the ice thickness at the vertex vi at time tn, {Fn

j } is the set of fluxes at

all lateral faces of the control volume Pi, and Si is the horizontal area of Pi. The flux Fn is
upwinded to stabilize the scheme in space; specifically, we have

Fn
j =

{
uj ·njljH

−
j if uj ·nj>0,

uj ·njljH
+
j otherwise,

(3.12)

where nj is the outer normal unit vector on the jth lateral face of the control volume Pi, lj

is the horizontal length of the j-th lateral face, H−
j is the average height inside the control

volume, and H+
j is the average height in the neighboring control volume of the jth lateral

face. The boundary condition for the scheme (3.11) is that the flux at the lateral faces of
the domain is zero because the 2D extent of the ice sheet does not reach beyond the 2D
computational domain.

The scheme (3.11) updates the thickness of each point in map view using the explicit,
forward Euler method, in which case an advective CFL condition must be satisfied for
stability. This scheme is usually first-order accurate in both space and time, however, it
exactly conserves the mass of the ice-sheet locally and globally which is very important
to simulation of long-time ice-sheet evolution.
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4 Numerical experiments

Parallel implementation of all numerical solvers for the above three-dimensional Stokes
ice-sheet model use MPI (Message Passing Interface) based on domain decomposition
methods discussed in [14].

4.1 Tests of the Stokes ice dynamics solver

We first test the performance of the Stokes ice dynamics solver, which is the core compo-
nent of the proposed computational ice-sheet flow model.

4.1.1 The ISMIP-HOM benchmark experiments

The ISMIP-HOM benchmark experiments [23] focus on the solution of the diagnostic,
three-dimensional flow field within an idealized, predominantly rectangular slab of ice
with length L and average thickness 1 km, resting on a sloping surface. Lateral boundary
conditions are either singly or doubly periodic and basal boundary conditions include
both no slip and a periodic, specified pattern of the basal traction parameter β2 in (2.9).
Exps. A and B have a zero-velocity Dirichlet boundary condition on the basal surface
Γb, whereas Exps. C and D include a Rayleigh friction basal sliding boundary condition
(see [23] for more details). The application of our pure Picard-based Stokes solver to these
tests was described in [14]. Here, we conduct Exps. A-D on a 40×40×20 structured tetra-
hedral grid (192,000 tetrahedral elements and 827,604 degrees of freedom), primarily for
the purpose of comparing performance between the Picard and hybrid Picard-Newton
nonlinear iteration schemes. As expected, the simulated velocity and pressure agree very
well with the results from [14] in all four experiments. Convergence behavior for the two
methods for Exps. A and C are shown in Fig. 1. Exps. B and D show similar convergence
behavior.

After starting with several Picard iterations, the Newton method converges quadrat-
ically in every case. The Picard-Newton method generally takes 8-15 iterations to reduce
the relative residual by 10−10, whereas the pure Picard method almost always took 20-25
iterations to reach a much larger relative residual of 10−4. Note that the relative residual
of the second iteration is used as the initial relative residual because we use a constant
viscosity as the initial guess for the first iteration.

The Newton method is usually invoked at the fourth nonlinear iteration in each ex-
periment. However, for the 5 km test cases, it is started between the 6-8th iteration in
order to ensure convergence. This reflects the fact that nonlinear Stokes system is more
difficult to converge as the aspect ratio of the domain (ratio of thickness to length) ap-
proaches 1 and/or as horizontal stress gradients start to make up a significant fraction of
the momentum balance.
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Figure 1: Convergence results of the pure Picard and Picard-Newton methods for ISMIP-HOM benchmark
experiment A and C. From left to right and then from top to bottom: the ice-sheet horizontal length L= 5km,
10km, 20km, 40km, 80km, 160km. Solid lines: Exp. A with pure Picard method. Solid lines with asterisk:
Exp. A with Picard-Newton method. Dashed lines: Exp. C with pure Picard method. Dashed lines with plus:
Exp. C with Picard-Newton method.

4.1.2 Realistic geometry and boundary conditions: Greenland ice sheet

Next, we test the performance of our computational model for a large-scale problem in
which the ice sheet geometry and boundary conditions are quasi-realistic and similar to
those that would be applied in practical climate science applications. The geometry and
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Figure 2: Greenland ice-sheet experiment model inputs and results. Left: the surface temperature (K); middle:

the logarithm of the basal sliding parameter β2 (Pa m−1) along the bottom surface; right: the surface ice

velocity magnitude (log base 10 of ma−1).

surface temperature fields are for the Greenland ice sheet and are taken from the SeaRISE
experiments (http://www.azimuthproject.org/azimuth/show/SeaRISE).At the top sur-
face, we use the temperature field shown in Fig. 2-left; the temperature at the bottom is
set to the local pressure-dependent melting temperature. The temperature inside the ice
sheet is then vertically linearly interpolated between the top and basal surface values.
This temperature field is then used to compute the flow rate factor A given in (2.6). We
apply the sliding condition in (2.9) over the entire base of the ice sheet, i.e., Γb = Γb,sld.
The basal friction parameter β2 in the basal boundary condition (2.9), shown in Fig. 2-
middle, is taken from the tuned initial condition of a previous large-scale Greenland
simulation [28]. Note that in regions where β2 is very large, the effect is equivalent to
a no-slip basal boundary condition. For simplicity, we impose a zero-velocity condition
on the lateral boundaries. This experiment is diagnostic: given the temperature field,
geometry, and boundary conditions, the three-dimensional velocity field for the ice sheet
is computed. A 5km resolution, structured, two-dimensional triangular mesh is gen-
erated to cover the Greenland ice-sheet horizontal domain ΩH. From this, a 10-layer
three-dimensional tetrahedral grid is constructed. The resulting three-dimensional grid
has 730,675 vertices and about 3.9 million tetrahedral elements, giving a total of about 17
million degrees of freedom.

We first run 15 Picard iterations due to the irregular bottom bedrock topography, and
then continue with Newton iterations until the change of velocity reduces to 10−4 ma−1

(meters per year). Note that we have changed the convergence criteria and convergence
threshold from those in Section 4.1.1. The reason for these changes are that ISMIP-HOM
experiments are used to demonstrate properties of our nonlinear iteration algorithm so
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that the residual value and a small threshold is used, whereas for the more realistic exam-
ples involving the EISMINT experiments and the Greenland geometry, we do not need
to converge to a 10−8 relative error; a sufficiently small change in the velocity is enough.
The velocity change is an absolute value with unit ma−1. For the Greenland example,
20 iterations (15 Picard + 5 Newton) are needed to meet the 10−4ma−1 threshold. Us-
ing 256 processors, the calculation took about 30 minutes.§ The results of the simulation
are shown in Fig. 2-right. The modeled surface speeds in the ice-sheet interior are of the
order of 10-100 ma−1; in localized regions near the margins (i.e., bedrock troughs contain-
ing outlet glaciers), they are as large as 1000 ma−1. These modeled speeds are broadly
consistent with observed ice speeds and are largely the result of localized regions where
rapid basal slip occurs (the blue and green regions in Fig. 2-middle).

4.2 EISMINT-II benchmark experiments for thermo-mechanically coupled
ice-sheet evolution

The European Ice-Sheet Modeling Initiative (EISMINT) consists of a series of idealized
prognostic experiments for studying the behavior of models designed to simulate ice-
sheet evolution. The second phase of that set of experiments, EISMINT II [25], focussed
on thermo-mechanically coupled ice-flow evolution. Importantly, at that time, the op-
erational ice-sheet models taking part in the intercomparison project were all based on
the Shallow-Ice Approximation (SIA). Those experiments assumed a radially symmetric
ice-sheet geometry and boundary conditions with radially symmetric and idealized cli-
mate forcing. While all SIA-based models tested showed considerable agreement in their
predictions, symmetry was often broken and distinct, regularly spaced “cold-ice spokes”
(see Fig. 5) appeared in certain experiments. Different models and different experiments
displayed spokes with different characteristics.

The EISMINT-II experimental setup features a square domain [0, 1500km] × [0,
1500km], a prescribed surface mass balance and upper-surface temperature, and an ini-
tial ice-sheet geometry. Depending on the experiment, no slip or sliding basal boundary
conditions are prescribed. Ice-sheet evolution is governed by the coupled ice dynamics,
temperature, and thickness equations.

The ice accumulation rate M(ma−1) is defined as a function of the horizontal coordi-
nates x and y,

M(x,y)=min
[
Mmax,Sb(Rel−

√
(x−xsummit)2+(y−ysummit)2)

]
, (4.1)

where Mmax denotes the maximum accumulation rate and Sb is the gradient in surface

§Note that in this section we only perform a single Stokes model calculation. In Section 4.2 where we treat ex-
periments for which the Stokes dynamics model is coupled to the time-dependent temperature and thickness
equations, multiple Stokes dynamics calculations are performed, one at each time step. Because solutions at
previous time steps provide good starting guesses for the nonlinear solvers, the number of iterations needed
and thus the timings for Stokes dynamics solutions are considerably smaller for all time steps compared to
that needed for the initialization step.
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mass balance with horizontal distance from the ice-sheet center. Note that inside the
circle of radius Rel, centered at (xsummit,ysummit), M> 0 (accumulation) whereas outside
that circle, we have M< 0 (ablation). The ice-sheet surface temperature Tsur f measured
in K is similarly defined as a function of x and y as

Tsurf(x,y)=Tmin+ST

√
(x−xsummit)2+(y−ysummit)2, (4.2)

where Tmin is the minimum surface air temperature in the ice sheet interior, and ST is the
air-temperature gradient with respect to the horizontal distance from the ice-sheet center.

The parameters listed in Table 2 were used for the temperature surface boundary
equation (4.2), the ablation equation (4.1), and the temperature rheology equation (2.6).
We report on the results of six experiments that are briefly described in Table 3. Exp.
A is a basic thermo-mechanically coupled run that builds an equilibrium ice sheet from
zero initial thickness. The other five experiments either start with the equilibrium initial
condition from Exp. A or start with zero ice, and change a few of the experimental input
parameters in order to investigate idealized changes in climate forcing. In [25], the result
of Exp. E is not shown because it provides trivial checks on model consistency, and so
Exp. E is also skipped in our simulations.

Table 2: Parameters used for the EISMINT-II benchmark experiments.

Mmax 0.5ma−1

Sb 10−2 ma−1km−1

Rel 450km

Tmin 238.15K

ST 1.67×10−2 Kkm−1

xsummit 750.0km

ysummit 750.0km

Table 3: Brief summary of the EISMINT-II benchmark experiments.

Experiment Descriptive comment Initial Cond.

A Basic thermo-mechanical run Zero ice

B Stepped 5K air-temperature warming Exp. A

C Stepped change in accumulation rate Exp. A

D Stepped change in equilibrium line altitude Exp. A

F Stepped 15K air-temperature cooling Zero ice

G Basal slip throughout Zero ice

Multi-resolution meshing is used in our EISMINT-II simulations to reduce the com-
putational costs of three-dimensional modeling. For all experiments, the ice thickness
and velocity have much larger spatial gradients at the ice sheet margins relative to the
interior. Thus, we use a relatively finer grid at and near the ice-sheet margins than in the
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Figure 3: The triangular horizontal mesh from which our three-dimensional grid is constructed for the EISMINT-
II benchmark experiments.

domain interior. The horizontal computational domain ΩH we use is a circular region
centered at (750 km, 750 km) with radius 650 km, which is enough to cover the region
occupied by the ice during the entire ice-sheet evolution. The mesh is constructed in the
following way. First, we generate a circular, two-dimensional, unstructured triangular
mesh inside the computational domain under consideration using the package from [12].
Then, we further extend the mesh in the radial direction to produce a higher-resolution
structured mesh near the margin, as shown in Fig. 3. The entire triangular mesh has 5,495
vertices and 10,761 triangles. Its average resolution at the margin is 5 km, whereas in the
interior it is about 12 km. Finally, we extrude the two-dimensional mesh in the z-direction
through 10 layers to produce a prismatic grid, then cut each prism into three tetrahedra to
build the final tetrahedral grid for our three-dimensional computational model. The final
grid has 60,445 vertices, 322,830 tetrahedra, and about 1.4 million degrees of freedom.

The overall model time step is limited by the advective CFL condition in the explicit
Euler solution scheme for the ice-thickness evolution. We found a time step of 10 years
to be adequate for stability in the experiments discussed below. Exps. A, F, and G are run
for 100,000 years and Exps. B, C, and D for 60,000 years; all experiments are run to an
equilibrium state as indicated by a relatively small change of height, e.g. less than 5e-2
ma−1. For the first time step in each experiment, we first solve with 10 Picard iterations,
followed by another 10 Newton iterations, or fewer if the relative residual error which
takes the residual of second iteration as initial relative value has decreased to 10−12 before
the iteration limit is reached. For the remaining time steps, which start with a good initial
guess, we first solve with 4 Picard iterations and then continue with another 4 Newton
iterations, or fewer if the velocity change (in the maximum norm) is less than 10−3 ma−1.
The relative residual is used for the initial step because there is no previous velocity to
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compare to. On 256 processors, Exps. A, F, and G took about 48 hours to run and Exps.
B, C, and D took about 24 hours for our computational model (2000-2500 model years
per wall-clock hour). The computational costs for solving the momentum equation, the
temperature equation, and the evolution equation at each time step are approximately
13s, 5s, 0.5s at the beginning, and 2.5s, 2.1s, 0.5s when steady state is reached. In the
following sections, we discuss additional specifics about the setup and numerical results
for each of the experiments. We note that the SIA model results for comparisons are
from [25] and that mean values over all SIA models are used; see Tables 4 (Exp. A), 5
(Exp. B), 6 (Exp. C), 7 (Exp. D), and 8 (Exp. G) in [25]. No table was provided there for
Exp. F.

4.2.1 Experiment A

In Exp. A, the ice sheet is initiated from no ice on a flat bedrock topography, and evolves
over 100,000 years to reach an equilibrium state. The ice-sheet volume, area, and other
characteristics at equilibrium are shown in Table 4. The areal extent of the ice sheet is
largely controlled by the spatial distribution of accumulation and ablation and is similar
for both the SIA and Stokes models. Both the total volume and the divide thickness from
the Stokes model is larger than from the SIA model, which means that the ice-sheet shape
produced by the Stokes models is bigger. The Stokes results are consistent with a narrow
“core” of relatively stiff ice directly beneath the ice divide as originally theorized by [29],
later confirmed by observations (e.g., [34]), and discussed in numerous other ice-flow
modeling studies (e.g., [9,18,26]), i.e., these are accurately described by the Stokes model
but cannot be accounted for in SIA models.

Table 4: Results for the EISMINT-II benchmark Exp. A.

Volume Area Melt Divide Divide basal

fraction thickness temperature

106km3 106km2 m K

SIA 2.128 1.034 0.718 3688.342 255.605

Stokes 2.240 1.039 0.796 3776.241 259.914

The basal temperature predicted by the two models is also quite different, although
one should note it is already quite different between the different SIA models in [25]. The
melt area for the Stokes model is about 7.8% of the basal area, greater than that for the
mean of the SIA models and close to the maximum of all SIA models. The divide basal
temperature determined by the Stokes model is about 4.3K higher, for reasons similar
to those discussed above with respect to the differences in ice-sheet shape. That is, the
Stokes model accurately captures the peculiar dynamics beneath flow divides, where de-
viatoric stresses are abnormally low due to the lack of vertical shear stress. The result
is less vertical advection beneath the divide relative to locations just off the divide, rel-
atively less advective cooling beneath the divide, and consequently, a local “hot spot”



1072 W. Leng et al. / Commun. Comput. Phys., 16 (2014), pp. 1056-1080

beneath the divide. Such hot spots have been discussed previously in the context of ice
flow modeling; see, e.g., [10,22,26]. Visual results of Exp. A are presented in the first row
of Fig. 4. The hot spots discussed above can be clearly seen in the middle panels. Also,
the radial symmetry of the basal temperature is retained by our model; the temperature
distribution is smooth and regular in appearance with no cold-ice spokes between the
frozen and melted regions of the bed. This is one of the major differences in the results
obtained using our Stokes model and previous studies that used SIA models, i.e., for this
experiment, most SIA models exhibit cold spokes whereas our Stokes model does not.

4.2.2 Experiment B

Exp. B starts from the final, steady-state result of Exp. A and applies an instantaneous,
uniform 5K warming at the surface by changing Tmin in (4.2) to 243.15 K. Thus, this ex-
periment demonstrates the model response to a step increase in the surface temperature.
Table 5 shows the equilibrium change in model characteristics caused by the warming.
The warming leads to an increase in divide basal temperatures of nearly 4.59 K, an ex-
pansion of the area of basal melt by 7.59%, and a general thinning of the ice-sheet (4.5%
at the divide and 2.7% globally).

Table 5: Results for the EISMINT-II benchmark Exp. B.

Changes Volume Melt Divide Divide basal

in fraction thickness temperature

% % % K

SIA -2.589 11.836 -4.927 4.623

Stokes -2.735 7.590 -4.491 4.588

The changes predicted by the SIA models are generally larger that those predicted by
the Stokes model; the differences for the changes in the melt fraction and divide thickness
are significant. For this experiment, most of the SIA models achieve a new steady state
that is radially symmetric with no cold spokes. The Stokes model output is still radially
symmetric and regular as is shown in the second row of Fig. 4.

4.2.3 Experiment C

Exp. C starts from the final, steady-state conditions of Exp. A and applies and instanta-
neous reduction in the local accumulation by reducing Mmax in (4.1) to 0.25 ma−1 and Rel

to 425 km. This experiment demonstrates the model response to a step accumulation-rate
decrease by uniformly reducing the accumulation rate by 0.25 ma−1 and by reducing the
size of the accumulation area radius by 25 km. Table 6 shows the equilibrium change in
model characteristics caused by the reductions in the accumulation rate and the accumu-
lation area. The change leads to a general thinning of the ice sheet (13.1% at divide and
28.3% globally). The divide basal temperature warms by 1.94 K because of the reduction
in vertical advection of cold surface ice. Although the reduced height causes the bed at
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Figure 4: Steady state results for the EISMINT-II experiments from our computational Stokes model. From
left to right: the velocity magnitude on the xz-plane, the temperature (K) on the xz-plane, and the basal
temperature on the xy-plane. From top to bottom: Exps. A, B, C, D, F, and G.
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Table 6: Results of the EISMINT-II benchmark Exp. C.

Changes Volume Area Melt Divide Divide basal

in fraction thickness temperature

% % % % K

SIA -28.507 -19.515 -27.806 -12.929 3.707

Stokes -28.315 -19.272 -22.860 -13.128 1.936

the ice-sheet center to be warmer due to advection and diffusion, the melt fraction actu-
ally decreases by 22.9% because the thickness over the rest of the ice sheet goes down as
well, leading to less insulation of the bed.

The changes predicted by the SIA and Stokes models are similar, except for the di-
vide basal temperature which is significantly smaller for the Stokes model. For this ex-
periment, the SIA models show a considerably reduction in cold-ice spokes compared to
Exp. A. The Stokes model again is radial symmetric and regular as shown in the third
row of Fig. 4.

4.2.4 Experiment D

Exp. D also starts from the final, steady-state conditions of Exp. A and reduces Rel to
425km in (4.1). This experiment demonstrates the model response to a change in the
area of accumulation only. Table 7 shows the resulting equilibrium changes in model
characteristics. Compared to Exp. C, the change leads to less thinning of the ice-sheet
(2.3% at divide and 11.8% globally). The divide basal temperature drops by about 0.22 K
because of a reduction in thermal insulation, resulting from a reduction in ice thickness
which is not compensated for by a commensurate reduction in vertical advective cooling.
The change in melt fraction decreases by only 0.4%.

Table 7: Results of the EISMINT-II benchmark Exp. D.

Change Volume Area Melt Divide Divide basal

in fraction thickness temperature

% % % % K

SIA -12.085 -9.489 -1.613 -2.181 -0.188

Stokes -11.836 -9.170 -0.366 -2.343 -0.222

The changes predicted by the SIA and Stokes models are again similar, except for
the melt fraction and the divide basal temperatures. For this case, however, SIA models
consistently show a steady-state pattern of the basal temperatures that contain cold-ice
spokes, similar to those seen in Exp. A. The Stokes model is again radially symmetric
and regular, as is shown in the fourth row of Fig. 4.
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4.2.5 Experiment F

Exp. F starts with no ice and differs from Exp. A only in that the upper-surface temper-
ature is 15K cooler. The results for Exp. F are given in Table 8. The detailed SIA model
results of Exp. F are not provided in [25] (partially because they differ too much between
the SIA models) and so we do not include them here. Compared to Exp. A, Exp. F shows
that the cooling at the surface leads to a drop in divide basal temperatures of nearly 14
K, a contraction of the area of basal melt by 8.76% of the basal area, and a general thick-
ening of the ice; the divide thickness increases by 465 m and the volume of the ice sheet
increases by 1.63×105 km3. For the Stokes model, the symmetry and regularity of all
fields is again evident as shown in the fifth row of Fig. 4.

Table 8: Results for the EISMINT-II benchmark Exp. F.

Volume Area Melt Divide Divide basal

fraction thickness temperature

106km3 106km2 m K

Stokes 2.470 1.039 0.4917 4370.936 246.555

4.2.6 Experiment G

Exp. G also starts with no ice and differs from Exp. A in that a sliding basal boundary
condition (2.9) is applied on the whole of the bottom bedrock surface. The sliding param-
eter in that equation is set to β2 =1000 Pa a m−1. Note that the boundary condition (2.9)
is different from the SIA boundary condition for which the local basal traction is only
the result of the local gravitational driving stress. This experiment demonstrates model
behavior under conditions of basal slip.

Table 9 summarizes changes in equilibrium model characteristics for Exp. G. Basal
sliding leads to substantial thinning compared to the zero-slip basal velocity condition
of Exp. A; there is a 1565 m reduction in the divide height and the volume decreases by
7.25×105 km3. The entire basal area is frozen and the basal temperature at the divide
decreases by 14.74 K. This dramatic change occurs because, over the course of the model
run, cold ice from the surface is rapidly advected to the ice sheet base as a result of the
large ice-flux divergence that accompanies fast basal sliding. The results show fast basal

Table 9: Results of the EISMINT-II benchmark Exp. G.

Volume Area Melt Divide Divide basal

fraction thickness temperature

106km3 106km2 m K

SIA 1.589 1.032 0.353 2365.206 249.134

Stokes 1.514 1.041 0.000 2210.758 245.173
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sliding while the entire basal area is frozen because the experiment allows basal sliding to
occur regardless of whether or not the basal temperature is at the pressure melting point.

SIA models still produce basal melting; this is a major difference between the SIA and
Stokes model results for Exp. G. The Stokes model again is radial symmetric and regular
as is shown in the last row of Fig. 4.

4.2.7 On the cold spoke instability

The instability of the SIA models that result in “cold spokes” is discussed in [24,25,30] and
elsewhere. At lower surface temperatures, the cold spokes instability of the SIA models
becomes more evident; all SIA models discussed in [25] displayed broken symmetry and
some, i.e., Exps. A, C, D, and F, developed cold spokes within the basal melting zone.
Because of the coupling between the temperature, the deformation rate factor, and the
velocity, irregularities eventually propagated into the flow field and the shape of the ice
sheet as well. Among all of the EISMINT-II experiments conducted using SIA models,
the cold spoke instability is most evident in Exp. F. Fig. 5 shows the simulated steady-
stated basal temperatures for Exp. F using the SIA dynamical core in the Community Ice
Sheet Model (CISM) [27] on a structured 60×60 grid (grid size 25 km), where cold ice
spokes are clearly evident.

To demonstrate that the lack of a cold-spoke instability in our Stokes-model results is
not affected by the structure or resolution of the computational grid, we run the Stokes
model on Exp. F again but on a structured, three-dimensional grid of horizontal reso-
lution 60×60 (the same grid size as the SIA run of Fig. 5) and 10 vertical layers. The
results of the steady state of the ice-sheet are shown in Table 10 and Fig. 6, which are
quite close to those obtained on the unstructured grid (Table 8 and the fifth row of Fig. 4).
No cold-ice spokes appear in the simulated basal temperature field, as demonstrated by
Fig. 6.

Table 10: Results of the EISMINT-II benchmark Exp. F on the structured grid.

Volume Area Melt Divide Divide basal

fraction thickness temperature

106km3 106km2 m K

Stokes 2.637 1.027 0.5106 4468.166 243.724

5 Concluding remarks

We have developed a higher-order discretization accuracy, variable grid resolution ca-
pability for simulating the three-dimensional, thermo-mechanical behavior of ice sheets
and glaciers based on a dynamical core that couples the nonlinear Stokes equations, the
temperature evolution equation, and the mass conservation equation. The high accuracy
and stability resulting from the use of quadratic finite elements for the velocity and cubic
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Figure 5: Simulation result of the basal temperature on the xy-plane of the steady states of the EISMINT-II
benchmark Exp. F. by the SIA ice dynamical core in the Community Ice Sheet Model (CISM).

Figure 6: Simulation results of the steady state of the EISMINT-II benchmark experiments F on the structured
grid. From left to right: the velocity magnitude on the xz-plane, the temperature on the xz-plane, and the
basal temperature on the xy-plane.

finite elements for the temperature is demonstrated. The nonlinear equations are solved
using a hybrid Picard-Newton solver, which reduces the number of iterations needed
for convergence when compared to the Picard solver alone. Differences in the cost per
iteration of the two methods are not significant, and so the hybrid approach results in
a considerable reduction in computational cost. The coupled model we have developed
can be applied to large-scale problems, such as high-spatial resolution simulations of the
Greenland ice sheet, and is stable and accurate over very long time integrations (hun-
dreds of thousands of years).

When applying our model to the EISMINT II experiments for thermo-mechanical ice
sheet evolution, we find no evidence for the cold spoke instabilities seen by other au-
thors who have used lower-order approximations to Stokes dynamics (e.g., shallow ice
or first-order approximations), uniform grids, and finite difference discretizations. Which
aspect or aspects of our methodology is responsible for the elimination of the cold spoke
instabilities is unclear. Here, we speculate that the use of a uniform grid alone is not
responsible for the instability, as discussed and demonstrated above (e.g., Fig. 6). While
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recent work on these same experiments using a first-order approximation to the Stokes
equations and finite element methods on an unstructured mesh [5] shows an apparent
reduction in the severity of cold spokes, they are not unequivocally absent, nor are the
basal temperature fields obviously smooth and symmetric, as in the present work. Based
on these observations, we speculate that the finite element method alone is not responsi-
ble for removing the instability in our experiments. Exactly which combination of factors
from the current model are responsible for removing the instability remains uncertain,
and we leave the answer to that question to future work. By using identical grids and
discretizations schemes for all the choices of models (e.g., shallow ice, first-order, and
Stokes for the dynamics, low-order or higher-order accurate schemes for the temperature
evolution, etc.), we should be able to unequivocally answer the question of what causes
the cold spoke instability and what combination of models and numerical considerations
are required to remove it.
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