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Abstract. For problems governed by a non-normal operator, the leading eigenvalue
of the operator is of limited interest and a more relevant mea sure of the stability is ob-
tained by considering the harmonic forcing causing the larg est system response. Var-
ious methods for determining this so-called optimal forcin g exist, but they all suffer
from great computational expense and are hence not practical for large-scale prob-
lems. In the present paper a new method is presented, which is applicable to problems
of arbitrary size. The method does not rely on timestepping, but on the solution of
linear systems, in which the inverse Laplacian acts as a preconditioner. By formulat-
ing the search for the optimal forcing as an eigenvalue probl em based on the resolvent
operator, repeated system solves amount to power iteration s, in which the dominant
eigenvalue is seen to correspond to the energy ampli cation in a system for a given
frequency, and the eigenfunction to the corresponding forc ing function. Implemen-
tation of the method requires only minor modi cations of an e xisting timestepping
code, and is applicable to any partial differential equatio n containing the Laplacian,
such as the Navier-Stokes equations. We discuss the method, rst, in the context of
the linear Ginzburg-Landau equation and then, the two-dime nsional lid-driven cavity
ow governed by the Navier-Stokes equations. Most importan tly, we demonstrate that
for the lid-driven cavity, the optimal forcing can be comput ed using a factor of up to
500 times fewer operator evaluations than the standard meth od based on exponential
timestepping.
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1 Introduction

In hydrodynamic stability, a classical analysis generally consists of two parts — the de-
termination of a basic state about which the governing equat ions may be linearized, and
the calculation of eigenvalues of the JacobianA. For non-normal operators, other consid-
erations may be more relevant. For example, solutions may experience transient growth
even when all of the eigenvalues are located in the left half o f the complex plane, and in
a non-linear framework trigger subcritical transition [10 ,30,31]. Another type of analysis
concerns the ampli cation due to a harmonic driving force  f(x)eé"!, where we seek to
determine the temporal frequency w and spatial pro le f that cause the largest energy
ampli cation in the system.

The purpose of this paper is to introduce a novel iterative ma trix-free method for
computing the optimal forcing of a driven system. This metho d is best explained by
placing it in the context of those used to carry out linear sta bility analysis, so we begin
by surveying these techniques. Denoting by A the governing operator linearized about
a basic state, perturbationsq(x,t) obey

fla_
W Aqg. (1.1)

The governing operator A is considered to be spatially dependent, either via the geo-
metrical speci cations of the problem, or through a spatiall y-dependent basic state about
which the evolution equations have been linearized, or both . Perturbations q may de-
pend on one, two, or three spatial dimensions. If there is onl y one spatial dimension,
the governing operator can be formulated and treated explic itly. For higher-dimensional
systems, if one or two of the spatial directions are homogene ous, then the eigenfunctions
are trigonometric or exponential in those directions and th e linearized operator is banded
or block-diagonal [12]. In such cases, it may still be possible to determine the eigenvalues
and eigenfunctions (denoted by eigenpairs) of A through direct methods.

With increased geometrical complexity, an explicit repres entation and a full diagonal-
ization of the operator are usually too costly in terms of sto rage and computational power
and it becomes necessary to use matrix-free methods to nd the desired eigenpairs. A
timestepping algorithm for solving (1.1), which carries ou t the action of an approxima-
tion to the exponential operator exp (ADt), is a natural means for doing so. Integrating
the linearized equations (1.1) in time is equivalent to carr ying out the power method on
exp(ADt), and will converge to the leading eigenfunction.

Turning to the topic of this paper, when a system is linearly s table, it may nevertheless
undergo ampli cation due to a harmonic driving force, as desc ribed by

%: Aqg+ fet, (1.2)

If all of the eigenvalues of A have negative real part, then q(x,t)! (A iwl) 1f(x)d"!
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ast! ¥ . De ning the ampli cation of (1.2) as

KA iwl) 1fk
Gw)  max = (13)

we seek to determine the frequency w and f that lead to the largest ampli cation in the
system. The solution to the optimization problem (1.3) will be referred to as the optimal
forcing of the system.

In order to nd the optimal forcing, (1.2) can be integrated in  time, followed by inte-
gration of the corresponding adjoint problem, forced by q

19

1t
Algorithms of this type have been employed by Monokrousos et a |. [26] to determine
the linear optimal initial condition and optimal forcing fo r the Blasius boundary layer.
Techniques based on the approximate exponential are straightforward, robust, and gen-
eral, but slow and computationally expensive. The reason fo r this is that the numerical
timestepping operator only approximates the exponential o perator exp(A Dt) in the limit
of small Dt. When Dt is small, exp(ADt) is near the identity, and so each action of the
operator has only an incremental effect. Moreover, (1.2) and (1.4) may need to be inte-
grated for a very long time horizon until initial transients  have decayed and the solution
has converged to an approximate asymptotic time-periodic s tate.

Another approach, which is equivalent to timestepping with  (1.2) and (1.4), is to seek
the singular value decomposition (SVD) of (A iwl ) 1, where the right singular vec-
tors correspond to the spatial forcing pro les and the left si ngular vectors correspond to
the spatial structure of the ow responses. This is suitable for problems involving opera-
tors small or sparse enough to be formulated explicitly [33, 34] or whose dynamics can be
captured by a reduced order model involving a modest number o f eigenfunctions [1, 2].
In practice, the latter approach involving a reduced order m odel may require a basis
ofas many as 10° eigenfunctions even for simple two-dimensional geometrie s, which
renders also this approach intractable for large problems.

In what follows, we describe a matrix-free iterative method for computing optimal
forcing that circumvents these issues and is applicable to problems of arbitrary size and
complexity. The method can conveniently be implemented by m inor modi cations of a
pre-existing time-integration code, and hence does not require development of any new
software. Variants of it have already been used to calculate steady states and eigenpairs
in uid dynamics [6-9, 25, 38, 39] as well as in condensed matter physics [22,23]. The
main purpose of the current article is to demonstrate for the rst time that iterative in-
version with Laplacian preconditioning can also be used to ¢ alculate the frequency and
spatial function that yield the optimal forcing. We will sho w that our method only re-
quires a small fraction of the number of operator evaluation s compared to the method of
timestepping, as has been shown to be the case for the calculdion of steady states and
eigenpairs.

= ATg+ 2q. (1.4)
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Previous research on Laplacian preconditioning has been almost entirely applications-
oriented, reporting mainly the physical results of the comp utations; very little analysis
of the method itself has been published [8, 38]. A secondary purpose of this article is
to carry out a detailed study of its performance and converge nce properties, in particu-
lar the effect of the value of Dt on the spectra and pseudospectra of the preconditioned
operator.

The cases we investigate are the linearized one-dimensiond Ginzburg-Landau equa-
tion, which is a commonly used model for the Navier-Stokes eq uations [4,14,15,17], and
the two-dimensional lid-driven cavity ow [3]. In Section 2  the concept and properties
of the Laplace preconditioner are reviewed and extended, and in Section 3 the optimal
forcing algorithm is outlined and applied to the chosen test cases. The article concludes
in Section 4 with a discussion.

Eigenvalue spectra are denoted by L ( ) and jpdividual eigenvalues by | . Inner prod-
ucts h, i, and their corresponding norms k k=" h, i, will refer to those of the L2-space.
The norm k k; refers to the usual Euclidean norm. A superscript asterisk d enotes com-
plex conjugate, and in the case of nite dimensional matrices conjugate transpose. Ad-
joint operators (possibly in nite dimensional) derived usi ng the L2-inner product are
denoted with a superscript dagger.

2 Laplace preconditioner

2.1 Operator de nitions

In what follows we study a linear partial differential equat ion whose evolution operator
A is the sum of two parts, L and N, i.e.

%—Aq: N g+ Laq. (2.1)
For the Navier-Stokes equations, L is usually taken to be the diffusive terms, with the
incorporation of the pressure, and N is taken to be the linearization of the advective
terms about the basic state. For the Ginzburg-Landau equation (see Appendix A.1), we
take L to contain the linear reaction coef cient m(x) as well as the diffusive term, giving
L g% x>+ m(x) and N to be N ny/ x. When the Reynolds number is low or
moderate, equations such as (2.1) are often discretized in ime via an explicit scheme
for N and an implicit scheme for L. The reason for this is that L poses a much more
stringent stability requirementthan N on Dt. In these cases, our method takes advantage
of the implicit timestepping scheme for L by interpreting it as a preconditioner for the
combined operator N + L. In other cases, such as for high Reynolds numbers, a mixed
explicit-implicit scheme is not advantageous. Our method d oes not apply to such ows.

Choosing the rst order forward/backward Euler time discret ization leads to

g(x,t+ D[t))t a%Y _ N g(x.t)+ Lo(x.t+ Dt), (2.2)
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from which the timestepping operator B(Dt) can be expressed as
q(x,t+Dt)= (I DtL) (I + DtN)qg(x,t) B (Dt)g(x,t). (2.3)

Given an existing timestepping code, we can calculate the difference between two con-
secutive solution elds separated by a single timestep Dt:

q(x,t+ Dt) q(x,t):(hB(Dt)I )a(x,t)
= (I DtL) Y1 +DtN) I q(x,t)

= (I DtL) 'Dt(N +L)qg(x.t). (2.4)

De ning
P(Dt) (I DtL) 'Dt, (2.5)

the calculation of (2.4) shows that the difference between two consecutive solution elds
provides the action of the evolution operator A left-multiplied by P (Dt), i.e.

B(Dt) | =P (DA. (2.6)

The main point of this approach is that the operator PA is far better conditioned than
A and thus that iterative methods solving linear systemsinvo lving PA converge far more
quickly than those involving A.

We can interpret the cause of this to be the fact that P is a good preconditioner for A.
As will be discussed in Section 2.2, the operator L is responsible for the ill-conditioning
of A. The preconditioning property of P can be understood by considering the limit
of large timesteps Dt for which P(Dt)= (I DtL) *Dt L 1, thus counteracting the
poor conditioning of L. For small timesteps, P(Dt) Dtl , and hence provides no pre-
conditioning. Thus P can be viewed as interpolating between Dtl and L ! asDt is
increased. We will refer to P and P T as the direct and adjoint Laplace preconditioner.
Considering the L2-inner product, it is straightforward to show that P is self-adjoint if
L is. This will for instance be the case for the Navier-Stokes ow case considered later,
where L is de ned by (2.12b), but not the case for the Ginzburg-Landau equation with
L = g%/ Ix%+ m(x).

We stress that we do not carry out the actions of A and of P separately. Given the
existence of a timestepping code which effectively carries out B, the action of B | is
more accessible than that of A. The action of P by itself may be performed by taking a
single implicit timestep with the linear operator L. Our assumption is that none of the
operators A, B, L, N, P are stored as matrices, and that only the actions of B, P and their
adjoint counterparts B, P T are available to us via the timestepping code. We emphasize
that the Laplace preconditioner is an intrinsic part of our o perator and thus requires no
additional computational cost, unlike many other precondi tioners.
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2.2 Preconditioning properties

To empirically examine the properties of P, we consider the one-dimensional Ginzburg-
Landau equation and solve a linear system involving operato r PA with a random right-
hand side using various Dt. Since the matrix A in general is non-Hermitian (see Section
A.1), a method designed for non-Hermitian systems such as bi-conjugate gradients sta-
bilized (Bi-CGSTAB) [40] or generalized minimal residual ( GMRES) [32] is required. For
the present analysis we will use GMRES and a relative tolerance of 10 3. The results
of these calculations are shown in Fig. 1(a), where it can be sen that the iteration count
goes down steadily with increasing Dt. To gain better insight in the properties of the
preconditioner, we turn to the convergence theory of GMRES [1 1, 18,19, 32].

The residual ry is bounded by

krkkz .
—2  min kp(PA)kK»>, 2.7
kroke  mamo p(PA)k2 (2.7)

where PE: f polynomials pof order k satisfying p(0)= 1g is the space of polynomials
over which the minimization is carried out. GMRES nds the opti mal polynomial p,2 PE
which realizes the minimum in (2.7).

The roots of the approximating polynomial py are the harmonic Ritz values [37] and
are given by the eigenvalues of the matrix Hy+hg, , (H,) ‘&g, where g is the kth di-
mensional unit vector and H is an upper Hessenberg matrix satisfying the Arnoldi rela-
tion:

(PA)Wk: W H+ hk+ 1 kWi+ 18- (28)
17
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Figure 1: Preconditioning of the Ginzburg-Landau equationith Laplace preconditioner. Frame (a) shows the
number of GMRES-iterations required to solve the syste®A with a random right-hand side for di erent Dt.

Frame (b) plots residual as a function of iteration count fobt= 10 3 (solid line), Dt= 0.1 (dashed line),Dt= 1
(dotted line), Dt= 10 (dot-dashed line).
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The right-hand side of (2.7) can be bounded in terms of the eig envalues of PA, i.e.

min kp(PA)Ky  k(X) min. max jpg(l)j, (2.9)
2P P2POI 2L (PA)

where k(X) denotes the 2-norm condition number of the eigenfunction ma trix X. If a
matrix is normal (i.e. if it has a complete set of orthogonal e igenvectors [37]), then k(X) =
1. Thus a requirement for fast convergence of GMRES for a reasmably normal matrix
PA is that the polynomial px can be made small on the spectrum L (PA) [19, 32]. If
the operator PA is strongly non-normal, as is the case for the Ginzburg-Land au operator
with the parameter values speci ed in Section A.1, k(X) will be very large, and the bound
given by (2.9) may be uninformative [21]. In such cases a more suitable convergence
bound is obtained by looking at the #pseudospectra of PA [37], de ned as

LAPA) f s2C j k(sl PA ) 'k, # 1g. (2.10)

A convergence bound based on the #pseudospectra rather than the eigenvalues can be
derived to be
. L(G) . . :

min kp(PA)ka ——=>min  max jpk(s)], (2.11)

P2 PO 2p# p,2P0s2L «(PA)
in which Ggis the bounding contour of L 4 PA) for a given #and L(Gy) signi es the length
of this contour. As shown in (2.11), the pseudospectral convergence bounds depend on
the particular value of # and different values may characterize the convergence at differ-
ent stages of the iteration [18, 19].

In Fig. 2, the effect of different Dt on the eigenvalue spectra and #pseudospectra of
the operator PA is shown. We focus here on the direct operator as similar behavior is
observed for the adjoint operator. To monitor the convergen ce, along with the spectra
and pseudospectra, we also plot the harmonic Ritz values [37].

Recall that, according to (2.5), for small timesteps, application of P amounts to a mere
scaling by Dt of A. Comparison of Fig. 2(a) and Fig. 5(a) shows that the former spectrum
essentially resembles a scaled down copy of the latter. In the limit of small Dt the spec-
trum and pseudospectrum of PA will be very close to the origin, where the approximat-
ing polynomials are normalized to have value one. Therefore , in order for the polynomial
to attain a small value on the spectra and pseudospectra, a large number of iterations are
required before it has suf ciently many degrees of freedom to satisfy both requirements.
Smaller values of Dt will scale down the spectra even further, while increasing Dt moves
the spectrum away from the origin and changes its shape, hence facilitating polynomial
tting (Figs. 2(b)-2(c)). Eventually, several eigenvalues are expelled from the core of the
spectrum (Fig. 2(d)). However, given that they are located f ar away from the origin, each
of them will require only one zero in the approximating polyn omial and may be anni-
hilated in a single iteration. As discussed in [18], outlier s do not affect the asymptotic
convergence rate. This is also seen in Fig. 1(b), where the agmptotic convergence rate
for Dt = 1 and Dt = 10 are approximately the same, although the spectrum for Dt = 10
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Figure 2: E ect of Dt on the eigenvalue spectra anttpseudospectra oPA . Plotted are the eigenvalue spectrum
(dots), harmonic Ritz values of GMRES-iteratiotk= 40 (circles), and the contours of the#pseudospectra ranging

from 10 2to 10 15 For Dt 1 the core of the spectrum remains centered aroudd = 1, | ;= 0 and does not
move relative to the origin. Notice how the harmonic Ritz vaks tend to be roughly aligned with the contours
G following (2.11), and for large Dt encircle an increasing number of eigenvalues.

contains many more outliers. Fig. 1(b) also displays an init ial region of stagnation in con-
vergence for small values of Dt. This may partly be explained by the non-normality of
the matrix PA [19], but given the rapid shortening of this region with incr easing Dt, this
more likely is due to near-origin clustering. As a nal remark , we notice no signi cant
change in the shape and location of the main part of the spectra for Dt& 5, which isin line
with what can be expected given the asymptotic behavior show nin Fig. 1(a).
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2.3 Extension to Navier-Stokes equations

In the present section, the concepts introduced in the previ ous sections for the one-
dimensional Ginzburg-Landau equation will be veri ed inthe  multi-dimensional setting
governed by the Navier-Stokes equations. The direct and adjoint elds will be denoted
q(x,t) and g(x,t), where x2 RY (d is the number of dimensions). As discussed in Ap-
pendix A.2, the incompressible Navier-Stokes equations can be formulated in the same
form as (2.1), namely Yg/ ft= N g+ Lq, where

Ng=P,( (@r)g (ar)a), (2.12a)
Lg=P, (Re r ?q), (2.12b)

and the operator P , () is used to project the velocities onto a divergence-free eld [16].

Although the method presented in Section 3 and all concepts d iscussed in this paper
apply to cases of arbitrary size and complexity, we will illu strate it on the well-known
two-dimensional lid-driven cavity ow (see Section A.2). T o verify that the desired be-
havior of the preconditioner is also obtained with the Navie r-Stokes equations, a gure
equivalent to Fig. 1 for the system PA with L and N de ned in (2.12) is generated. In
Fig. 3(a), the system s solved to a relative tolerance of 10 1°for different values of Dt with
a random right-hand side. Indeed, the same trend as observed in Fig. 1(a) is obtained.
Variation of the Reynolds number from Re= 100 to Re= 500 increases the iteration count
required for convergence and Dt at which the preconditioner saturates. Fig. 3(b) shows
how the residual of the calculation varies with iteration fo r different Dt. Again, the same
behavior with respect to Dt as seen in Fig. 1(b) is observed (here only the results for
Re= 100 are shown for clarity).

(@) e (b)
Re

o %
S <
‘('u' ~
5 102 —é
= X

10'

10'3 10‘2 10'1 100 101 102 0 20 40 60 80 -100 120 140 160 180

Dt Iterations

Figure 3: Convergence of GMRES for the lid-driven cavity. &ne (a) shows the iteration count versus timestep
Dt for Re= 100 (black), Re= 300 (blue) and Re= 500 (red), and frame (b) illustrates the decrease in residual
with iteration count for Re= 100and Dt= 10 2 (solid line), Dt= 0.1 (dashed line),Dt= 1 (dotted line), Dt= 10
(dot-dashed line).
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3 Optimal forcing

With the increased understanding of the properties of Lapla ce preconditioner from Sec-
tion 2, we now explain how to apply these techniques to the pro blem of optimal forc-
ing. As in the previous section, we start by deriving the meth od for the one-dimensional
Ginzburg-Landau equation, and then apply it to the two-dime nsional Navier-Stokes equa-
tions.

3.1 Application of Laplace preconditioner

We recall from Section 1 that we are interested in the harmoni cally driven system

M_ jwt
0 Ag+ fe"!,

where g= q(x,t) and x represents the spatial coordinate. The linear operator A depends
on x and usually contains spatial derivatives. This problem has as its general solution

aix,t)= lle(x) (A iwl) f(x)e™, (3.1)

where ¢(x)= q(x,00+( A iwl) 1f(x). Assuming that all of the eigenvalues of A have
negative real part, thenast! ¥,q(x,t)! s(x)€"t, where

s(x) (A iwl) f(x) R (iw)f(x). (3.2)

Thus, an input eld f is mapped into an output eld s by the resolvent operator R.
De ning the ampli cation (gain) of (1.2) as
s
ks(x)k h R (iw)f(x), R (iw)f(x)i
m = . ,
kfl?éxokf(x)k krPkso hf (x), f(x)i

G(w) (3.3)

we seek to determine the forcing frequency w and forcing pro le f that yield the largest
ampli cation. The problem of determining the ampli cation G(w) and f, given a fre-
quency w, is thus that of nding the dominant eigenpair of the operator

RT(W)R(iw)= (A iwD(AT+iwl) g (3.4)

The operator R 'R is self-adjoint, which implies that all of its eigenvalues a re real and can
be ordered in descending order. Physically, hf,RTR fi is a measure of the kinetic energy
in the domain, and will thus always be larger than or equal to z ero.

As previously stated, it is generally not possible to constr uct and treat the operators A
or AT explicitly. However, as shown in (2.4)-(2.6), the matrix-v ector products are realized
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through the difference between solution elds separated by o ne direct or adjoint rst-
order Euler timestep. Given an estimate f(¥, we produce f&*1 R TR (K as follows:

1
fD= (A iwl)(AT+iwl) £ 0 (3.5a)
(A iwl )(AT+iwl ) fi+D = £(K) 0 (3.5b)
P(A iwl)PT PPTAT+iwl ) fkD=p R, (3.5¢)

Formation of each power iterate (K thus requires the solution of two linear systems,
which will be well-conditioned given a suitably chosen Dt, and one application of the
direct and adjoint Laplace preconditioner. We emphasize ag ain that we neither form
nor factorize any of the operators in system (3.5). Our method is entirely matrix-free,
meaning that all linear systems are solved using GMRES, which requires only the action
of the operator on a eld.

The complete algorithm for solving (3.5¢) and carrying out p ower iterations is given
in Algorithm 1. Steps 4-7 essentially implement (3.5c), whereas step 8 evaluates the
Rayleigh quotient. As discussed in Section 2.1, the action of PA (and PTA™) are ob-
tained by (2.4). The action of P (and PT) can be obtained by simply taking an implicit
timestep with L. If PA, P and their corresponding adjoint operators are real, and the
complex arithmetic needs to be handled explicitly, the size s of the systems are doubled,
so that on each iteration the system

PA  wP v, _ w
wP PA vy W (3.6)
is solved, followed by a similar equation for the adjoint pro blem.

Due to the self-adjointness of R TR, eigenvectors corresponding to different eigenval-
ues will be pairwise orthogonal. If sub-optimal forcing pro les are of interest, for instance
if different forcing pro les have similar ampli cation rates , or, if a basis on which an arbi-
trary forcing can be represented is sought, the solution of ( 3.5¢) (steps 4—7 of Algorithm 1)
can be coupled with the Lanczos algorithm [28] in a straightf orward manner.

In order to obtain the optimal forcing frequency and forcing function, the optimiza-
tion problem (3.3) must be solved for a range of frequencies w. Hence, computational
savings can be achieved with a good choice of initial vector (9. Techniques exist for re-
cycling Krylov subspaces when solving a sequence of slightly varying linear systems [27],
but here a sequence of slightly varying eigenvalue problems needs to be considered. As-
suming that Dw is small, then the operators R T(iw+ iDw)R (iw+ iDw) and R T(iw)R (iw)
will be close to one another (a rst order Taylor expansion sho wsthat R T(iw+iDw)R (iw+
iDw)= RT(iw)R(iw) Dw[(2wl +i(A A ™) (RT(iw)R(iw))?]), and as a result, it is rea-
sonable to expect the eigenpairs of the two operators also to be close. Hence, a good
candidate for the initial vector of Algorithm 1 applied to  w+ Dw is the optimal forcing
pro le obtained for the preceding frequency w. Alternatively, if the Lanczos algorithm
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Algorithm 1: Optimal forcing through application of the Laplace precond itioner
and the inverse power method.

Input : Forcing frequency w, initial guess (@
Output : Ampli cation G, force prole f

1 fO £ kfOk;

2a® 0

3 for k=1,...do

4 | wpP fkD.

solve (PA iwP)v=w;

w P v

solve (PTAT+iw PT)v=w;

a® h fk D yi;

f0 v/ kvk:

10 if satis edthen break;

11 end

© 00 N o O

12 G ak:
13 f

is carried out, the initial vector can be chosen as a linear combination of the dominant
eigenvectors for the preceding frequency.

3.2 Validation case: Ginzburg-Landau equation

As an initial validation case, Algorithm 1 is implemented an d applied to the Ginzburg-

Landau equation. Given the preconditioning capabilities o f the Laplace preconditioner
shown in Fig. 1(a), a timestep of Dt = 10.0 is chosen. In order to validate the results, we
also consider an SVD of the resolvent operator, which is a convenient way of computing

the optimal forcing and its corresponding response for a sma Il problem like the present

one. Given (3.3), and the Cholesky factorization of the weig ht matrix associated with the
L2-inner product, M, the gain can be written as

G(w)= kM (A iwl) M k,. (3.7)
An SVD of the operator appearing on the right-hand side of (3. 7) yields
M(A iwl) M t=usvh) (A iwl) (M v)=(M U)S, (3.8)

where the weighted right singular vectors (M V) are to be interpreted as forcing pro-
les, the weighted left singular vectors (M 1U) as the spatial distributions of the corre-
sponding ow responses, and the singular values S as their ampli cations.
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Figure 4: Optimal forcing of the Ginzburg-Landau operator.(a) Frequency response with a peak energy
ampli cation for w= 0.648 (b) The modulus of the optimal forcing function (solid blueline), the modulus
of the adjoint eigenfunction corresponding to eigenvalde= 0.018+i0.648(dashed red line) scaled according
to the left vertical axis, and the optimal response (solid &tk line) to this forcing scaled according to the right
vertical axis. The spatial region of exponential instahyi is shown in gray. The solid dots are results from an
SVD, i.e. sy in (@), and M 1u; (blue) and s;M 1v; (black) for w= 0.648in (b) (for a description, see the
text).
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Figure 5: Eigenvalues of the discretized direct Ginzburgwhdau operator. A close-up of the leading ones marked
with a rectangle in frame (a), is plotted in frame (b). The regn of instability is shown in gray.

The frequency response is shown in Fig. 4(a) and has an energypeak atw = 0.648
due to resonance with the leading eigenvalue (see Fig. 5). An ampli cation peak for
the same frequency was also obtained by Bagheri et al. [4] when applying a Gaussian
force centered around the upstream instability branch (bra nch I, x=  8.246) for the same
con guration.

The corresponding optimal forcing pro le is plotted in Fig. 4 (b) with a blue solid
line. The prole is seen to have a peak at x= 7.202 around the upstream instability
branch and to closely resemble the adjoint eigenfunction corresponding to eigenvalue
| = 0.018+i0.648, shown with a red dashed line. The optimal response to this forcing
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is recovered by solving (3.2), which in practice amounts to s olving
(PA iwP)s=Pf. (3.9

The optimal response is plotted with a black solid line in Fig . 4(b). We see that the optimal
response is oriented towards the downstream instability br anch (branch I, x= 8.246) and
has a norm that matches the peak in Fig. 4(a).

Comparison of these results with the largest singular value s; (which is equivalent
to the resolvent norm), and the corresponding left and right singular vectors M 'u; and
siM v shows a perfect agreement.

3.3 \Validation case: Navier-Stokes equations (lid-driven  cavity ow)

Next, Algorithm 1 is applied to the lid-driven cavity ow. In addition to the operators
de nedin (2.12), we now require their adjoint counterparts, i.e.

Nfg=P . ((ar)g (r®Tg), (3.10a)
LTg=P, (Re r ?g) (3.10b)

(see Section A.2 for details and references).

The outcome of the computation for Re= 100 is shown in Fig. 6(b). As seen, the largest
ampli cation, G(w)= 1.9879, is achieved for a steady forcing, which resonates with the
eigenmode corresponding to the leading eigenvalue | = 0.5425+i0.0 (see Fig. 6(a)). To
recover the optimal ow response, one can either solve (3.9), or substitute the optimal
forcing into the governing equation and integrate the solut ion in time. Here we choose

® 45
@7 . osa5i00 (b)° O
2 . 2
3.5
1 ’ o 1 3
~ e . N, 2.5
T B P
S . 1 1.5
. 1
2 "2 0.5
%2 3 2 1 0 1 B 1 15 2 % 5 10 15 20
I G(w) t

Figure 6: Frequency response of the lid-driven cavity &e= 100 The eigenvalue spectra showing the 20
leading eigenvalues of the lid-driven cavity is plotted imame (a) (the region of instability is colored in gray).
The energy ampli cation for di erent frequencies is shownn frame (b), where results obtained with Algorithm
1 and 2 are plotted with dots and circles, respectively. Fram(c) shows the energy evolution in the system
when driven by a steady force corresponding to the ampli dan peak in frame (b).
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Algorithm 2: Optimal forcing through time integration.

Input : Forcing frequency w, initial guess (9, optimization horizon T
Output : Ampli cation G, force prole f

fO £/ kfOk:

1
2 a® 0

3 for k=1,...do
4 | =0 O;

R ~ .

5 | integrate Qji=7= OT Ag+ flk Dawt gt
obtain the response s(x) during the last period of win t2[0,T];
6 git=T O; R

i i — 0 T iwt
7 integrate gjt=0=  ; A'g+2se" dt,
obtain the response b(x) during the last period of win t2[0,T];
s | a® k bk/2;
o | fW b (2aM);
10 if satis edthen break;

11 end 0
12 G W;
13 fi;

the latter approach, which gives the solution q(x,t)=( €' I )A 1f(x) (sincew= 0). As
expected,q! R (iw)f and kqk?! G? after a brief transient phase (see Fig. 6(c)).

As a validation, we compare our results with those obtained w ith the method of [26].
This method is derived by seeking a stationary point of the La grangian functional (see the
derivation in Appendix B). On each iteration, the direct equ ation is integrated forward in
time and during the last period of the forcing frequency, the ow response is computed,
e.g. through a Fourier transformation. This ow response is then used as a forcing of
the adjoint equation, which is integrated backward in time. The details of the different
steps are outlined in Algorithm 2 and the result of this algor ithm for a sample of forcing
frequencies are shown in Fig. 6(b). As seen, the agreement béwveen the results obtained
with the two algorithms is good.

To show the ef ciency of the novel method, the computational ¢ ost associated with
calculating the largest eigenpair of the operator R T(iw)R (iw) using Algorithm 1 and Al-
gorithm 2 is investigated. An important note regarding thet wo methods is the role of Dt,
which in Algorithm 1 is an algebraic parameter that should be chosen large enough to
ensure convergence of the linear systems. (Absolute and rektive tolerances of 10 °and
10 13, respectively, are used as a convergence criterion for the iterative solvers.) In con-
trast, when carrying out the time integration in Algorithm 2, we march the solution using
the timestepping operator, i.e. q(x,t+ Dt)= B(Dt)q(x,t)+ P (Dt)<(fé"!). The timestep
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Dt must be chosen small so as to achieve suf cient precision in th e timestepping scheme
and to achieve stability via the CFL-condition. Moreover, th e time horizon T in Algo-
rithm 2 should be chosen long enough such that the homogeneous solution in (3.1) has
decayed and the output is dominated by the particular soluti on. Convergence is mea-
sured by ja(® a(k Dj and the computation is halted when this value is below 10 6. We
furthermore choose T to be the smallest integer number of forcing periods that yie Ids a
change in the gain that is below this tolerance. Correspondi ngly, for the case of w = 0.0,
the integration time was gradually increased in steps of 500 timesteps until the further
increases led to a change in gain that was below the tolerance For consistency of the
comparison, time integration is carried out using the rstor der forward/backward Euler
time discretization de ned in (2.3). The initial condition f or the forcing pro le is random
noise in both algorithms.

SinceN can be applied explicitly, the cost of each timestep is mainl y due to solving
(I DtL) !. Therefore, each application of B, PA and P and their adjoint counterparts
is measured as 1 cost unit, meaning that the price of each timestep in Algorithm 2 is 1
unit (the force term can be grouped together with the advecti ve term), and the price of
each iteration required to solve the systems in Algorithm 1 i s 4 units (or 1 unitif w= 0),
assuming that the complex arithmetic must be handled explic itly by doubling the system
size according to (3.6).

The resulting number of operator evaluations are presented in Table 1. Both methods
are shown to give the same ampli cation to the third or fourth d igit, but the number of
operator evaluations associated with Algorithm 1 is betwee n 30 and 490 times lower than
that associated with Algorithm 2 depending on the forcing fr equency. For generality, we
do not compare the wall-clock time associated with executin g the different algorithms
since this is strongly dependent on the spatial discretizat ion. However, one could expect
these gures to be re ected in the execution time for a numeric al scheme in which the
cost of evaluating the above operators is independent of the timestep. This is the case,
for example, if the linear problems are solved directly, as t hey are in a spectral method
with a tensor-product basis. Although the above comparison indicates that the inverse
power method has the potential for being far less costly than time integration for the
same accuracy, the exact gures are strongly dependent on the ow case, tolerance and
mesh.

Table 1: Comparison of the results and the number of operatewaluations associated with Algorithm 1 and
Algorithm 2 for di erent w.

Time integration Inverse power method
w T cost G(w) cost G(w)
0.0 | 29.00| 261,000| 1.987883| 533 1.987877

1.0| 31.42| 471,240| 1.029109| 3,764 1.029304
3.0 | 14.66| 425,140| 0.454935| 7,208 0.454855
5.0 | 7.54 | 452,400| 0.275763| 15,020 0.275634
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Figure 7: Frequency response of the lid-driven cavity &e= 8015 The leading eigenvalues of the lid-driven
cavity and the #pseudospectrum (logarithmically spaced colored cont@)rare plotted in frame (a) (the region
of instability is colored in gray). The energy ampli cationfor di erent frequencies is shown in frame (b).

As a nal example, we increase the Reynolds numberto Re= 8015, which is very close
to the critical Reynolds number Re.2 [8017.6,8018.Bat which the ow undergoes a Hopf
bifurcation [3]. Since the ow is asymptotically stable, bu t close to the rst bifurcation
point, we expect a large energy ampli cation in the presence o f harmonic forcing, which
makes this con guration a suitable prototype problem for stu dying optimal forcing. The
streamfunction of the base ow, visualized with black conto urs in Figs. 8 and 9, shows a
large primary vortex in the center of the cavity and a weaker s econdary vortex in each
corner. (The secondary vortex in the upper right corner stem s from the treatment of the
corner singularities, see Appendix A.2.) There is also a tertiary vortex in each lower
corner of the cavity, as well as the sign of a very weak quatern ary vortex (not visible
in the gures) in the lower right corner. The eigenvalue spect ra for this case, shown in
Fig. 7(a), reveals that the least stable eigenvalue isl = 3.3681 10 2 (2.6935, which
corresponds to a temporal frequency of 0.4287. This is compaable with the frequency
0.4496 of the limit cycle at Re= 8018.8, reported by [3].

A convergence study similar to that presented in Figs. 1(a) and 3(a) suggests that good
convergence for this case is obtained with Dt = 10°. The computed energy ampli cation
is plotted in Fig. 7(b). Since the ow is so close to the rst bif urcation point, all computed
eigenvalues are weakly damped, causing a strong energy ampli cation ranging between
10 and 1000 for every forcing frequency. From the gain curve, several local maxima cor-
responding to forcing frequencies w f 0.0,0.91,1.66,2.17,2.69,3.25,3.70,4.34,4.88n be
identi ed. For most of these peaks, the bandwidth of the reson ance frequency is very nar-
row, which is common for weakly damped systems. The sharp tra nsition between a peak
and a valley is also re ected in the #pseudospectrum, plotted in Fig. 7(a). The present
pseudospectrum is not evaluated for the full operator, but f or the low-dimensional Hes-
senberg matrix arising from the Arnoldi-factorization use d to compute the eigenvalue
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spectra in Fig. 7(a) [36]. As seen, the#pseudospectrum consists of several regions of al-
ternating sensitivity, which roughly coincide with the pea ks and valleys of the gain curve
in Fig. 7(b).

The largest response is obtained forw = 2.6875, which is very close to the frequency of
the least stable eigenvalue. This is the optimal forcing of t he system and the ampli cation
at this pointis G(w) 1100. The streamfunction of the corresponding optimal forc ing
pro le is visualized in Figs. 8(a) and 8(b). As can be seen, the pro le is localized on the
shear layers of the right side of the cavity immediately abov e the lower secondary vortex
and around the primary vortex located in the center of the cav ity. Since the velocity of the
lid is in the positive x-direction, the primary vortex assumes a clockwise rotatio n. Hence,
the ow response due to this forcing (evaluated by solving (3 .9)) is emphasized towards
the left side of the cavity, and the shear layers separating the primary vortex from the
secondary ones (see Figs. 8(c) and 8(d)). The reason for thistrong ampli cation can be
understood by comparing the forcing pro le in Fig. 8 to the for  cing pro le corresponding
to w = 2.9375 shown in Fig. 9. This frequency represents a valley inthe gain curve in
Fig. 7(b), and as can be seen, the pro le is entirely localized to the shear layers on the right
side of the cavity (the color scale of Figs. 8(a), 8(b), and 9 & the same). Inspection of the
forcing pro les corresponding to the other peaks and valleys , shows that most of these
(except those corresponding to low frequencies, w< 1.0) resemble the structure visualized
in Fig. 9, and attain their maximum on the right side of the cav ity immediately above the
lower secondary vortex. One may thus conclude that the stron g system response around
w=2.6875 is mainly caused by excitation of the primary vortex, which appears to be very
receptive to this frequency and insensitive to other drivin g frequencies.

Furthermore, as was the case for the Ginzburg-Landau equation, Figs. 8(a) and 8(b)
have a structure similar to that of the adjoint eigenfunctio n corresponding to the least
stable eigenmode (not shown). It can be shown that in order to optimally excite an eigen-
mode with eigenvalue |, the forcing frequency should be w = (I ) and the shape of
the forcing function be close to the adjoint eigenfunction ¢ orresponding to this mode
(see [35)).

The accuracy of these results is estimated a posteriori by substituting the computed
eigenpairs into the eigenvalue relation k((A iwl )(AT+iwl)) 1f®  G(w)2f(Kk, which
can be evaluated using the operators PA, P and their adjoints. The magnitude of this
residualis 10 3 10 ° for all the frequencies.

4 Summary and conclusions

We have presented a method for calculating the optimal input for a harmonically forced
linear problem, and its resulting ow response. The core of t he method is the classic
inverse power method applied on the resolvent, which is in tu rn preconditioned by the
inverse Laplacian. The method can readily be implemented by adapting a pre-existing
time integration code. It can therefore be used in the same circumstances as time inte-
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Figure 8: Optimal forcing pro le at w = 2.6875for the two-dimensional lid-driven cavity,Re= 8015 Real and
imaginary parts of the optimal forcing pro le are shown in (aand (b), respectively, together with real and
imaginary part of the resulting ow response shown in (c) an¢d). The color shows the streamfunction of the
optimal forcing and response, with red and blue indicatingopitive and negative values, respectively. The solid
and dashed lines represent negative and positive valuespetively, of logarithmically distributed contours of
the base ow streamfunction.

(@ (b)

Figure 9: Streamfunction of the forcing pro le correspondig to w = 2.9375for the two-dimensional lid-driven
cavity, Re= 8015 Real and imaginary parts of the forcing pro le are shown iraj and (b). The color shows the
optimal forcing with red and blue indicating positive and rgative values, respectively. The solid and dashed
lines represent negative and positive values, respectyelf logarithmically distributed contours of the base ow
streamfunction.
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gration, and can take advantage of all of the computational a dvances developed for time
integration for various spatial discretizations, includi ng nite differences, nite elements,
spectral and spectral elements.

Versions of this method have already been used to calculate steady states and eigen-
values [6, 7,9, 22, 23, 25, 38, 39]. In this exploratory paperwe have investigated the one-
dimensional linear Ginzburg-Landau equation, which isaco mmon model for the Navier-
Stokes equations; and the two-dimensional lid-driven cavi ty ow, which is a simple
Navier-Stokes case that is suitable for testing novel computational methods.

In the Ginzburg-Landau case, all operators can be stored, inverted, and diagonalized
explicitly. This has enabled us to study the properties and ¢ onditioning of the operatorsin
great detail, as well as to validate the results obtained wit h the proposed method against
SVD. With the nal goal of studying the optimal forcing of larg e three-dimensional com-
plex ow problems that are governed by the Navier-Stokes equ ations, we have imple-
mented the proposed method in the spectral element code Nek5000[20]. Since matrices
cannot be stored and decomposed for a large ow case, the alternative to SVD that has
been used is to integrate the direct and adjoint Navier-Stok es equations in time, which
upon convergence Yyields a stationary point of the correspon ding Lagrangian functional.
As a proof of concept, the two-dimensional lid-driven cavit y ow at Re= f 100,300,500
is studied. This simple test case shows convergence behavio that is consistent with
that of the Ginzburg-Landau equation. A comparison of the op timal forcing computed
with the novel method to that obtained through time-integra tion for Re= 100 shows that
the proposed method gives similar results but requires one t o two orders of magnitude
fewer operator evaluations. In order to further demonstrat e its applicability to higher
Reynolds number ows, the forcing of a marginally stable lid -driven cavity at Re= 8015
is investigated. The results show that the ow is susceptibl e to a wide range of forcing
frequencies, but that the largest energy ampli cation ( G(w) 1100) is obtained for a har-
monic forcing with frequency w= 2.6875, corresponding to the least stable eigenvalues
| = 3.368110 ° i2.6935. Itis shown that this strong energy gain is due to excitation of
the primary vortex, which is very receptive to a driving freq uency close to the frequency
of these eigenvalues.

In order to keep the discussion general, we have deliberately chosen to omit technical
details associated with the solution and spatial discretiz ation of the selected model prob-
lems. Such issues, and application of the method to larger problems involving complex
geometries, will be covered in future publications.
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A Test problems

A.1 Ginzburg-Landau equation

The one-dimensional linear Ginzburg-Landau equation read s

Tq 17, T

= — + 00—+

Tt Nax " 992 mx) o x2[ ¥ ,¥], (A1)
with boundary conditions q(x,t)! 0 asx! ¥ . The corresponding adjoint equation

derived with the L2-inner product is

g _ 1 T
- Mot W+m(x) 0, x2[ ¥.¥], (A.2)

and is subject to boundary conditions g(x,t)! Oasx! ¥. Eq. (A.1) is of advection-
diffusion-reaction type, where the function n(x) can be considered to be a spatially-
dependent reaction rate. Depending on the form of m(x), (A.1) may exhibit stability,
or instability [17], which makes it a suitable model for the N avier-Stokes equations.

The reaction term is chosen to bem(x)=( my &%)+ my(x?/2 ) [15]. The coef cient myis
a bifurcation parameter analogous to the Reynolds number an d np determines the degree
of non-parallelism. The quadratic form of n{x) results in an unstable region bounded by

(( 2/ m)(m 2))¥? (see the shaded regions in Fig. 4(b)). The advection coef cient
is n= U+ 2ic, and the most unstable wave number is ¢,. The diffusion coef cient is
g = 1+ icyq, where ¢4 is the dispersion coef cient. The signi cance of ¢, and ¢4 can be un-
derstood through the dispersion relation D (k,w,mp)= 0, by neglecting the dependence on
x and expressing q as a superposition of normal modes (see Bagheri et al. [4] for detalls).
If dm(x)/d x6 0, i.e.m6 0, and if either U6 0 or c46 0, the Ginzburg-Landau operator
can be shown to be non-normal and to have non-orthogonal eige nfunctions.

In order to compute optimal forcing, a stable ow case is nece ssary. We have there-
fore chosen the set of numerical parametersU = 2.0,¢c, = 0.2,¢c4= 1.0, np= 0.38 and
mp=0.01, which corresponds to the sub-critical case of [4]. Eqgs (A.1) and (A.2) are dis-
cretized using Hermite polynomials and the differentiatio n suite provided by Weideman
and Reddy [41].

A.2 Navier-Stokes equations (lid-driven cavity ow)

The non-dimensionalized linear incompressible Navier-St okes equations are given by
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=T p (@r)a (qr)g+Re’r 4, (A.3a)
r q=0, (A.3b)

where the perturbation eld is denoted q=(u,v)", and the steady base ow around
which the stability analysis is performed is denoted q=(u,v)'T. By following the
Helmholtz-Hodge decomposition theorem [16] and introduci ng an orthogonal projector
P . () onto a divergence-free eld, (A.3a) may be rewritten schemat ically as

"JT—?:Pr( @r)q (qr)@+P, Relr?q (A.4)

which brings (A.3) into the same form as (2.1). In addition to the operators de ned by
(A.4), we also consider the adjoint counterparts de ned in a s imilar fashion as

:TT—?:Pr @r)g (ra)Tg +P, Re'r g (A5)

(see [5] for details on the derivation of the adjoint Navier- Stokes equations).

As a test case, the two-dimensional lid-driven square cavity is considered. The
method is incorporated into the Navier-Stokes solver Nek5000[20], which is based on
the spectral element method [29] and uses thePy Py 2 discretization for velocity and
pressure [24]. The base ow obeys homogeneous Dirichlet conditions on all the bound-
aries except at the top boundary, where the y-component is homogeneous and the x-
component is given by

8
3 1, ifjXj (12 1/ Xrise),

— o~ 1 . .~

W=y e w0 (2 Ukis) <iXj< (12 e),
"0, otherwise,

(A.6)
in which X=x 1/2 (x2][0,1]). Eqg. (A.6) represents a two-sided symmetric step func-
tion [13] used to treat the singularities that arise in the to p corners due to the discontinu-
ous boundary conditions (see e.g. [3] for another treatment of this issue). In order to have
a smooth velocity distribution along the boundaries, the tu ning parameters of (A.6) are
chosen to bex;ise= 6.0, ande= 0.001. For the perturbation, homogeneous Dirichlet con-
ditions are imposed on all the boundaries for q and g. With these boundary conditions,
P (Dt) as de ned in (2.5) will be self-adjoint.

B Derivation of the optimal forcing time integration method

Consider a dynamical system such as (1.2),d/ t= Ag+ feWt and introduce the ansatz
function g(x,t)= s(x)é"!. The Lagrangian governing the problem of determining the
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optimal forcing reads [26]
L (sba,f)=hssi < fho(iwl A )s fig a(hf,fi 1), (B.1)

where hs,si is the energy of the response (the objective to be maximized), and the other
two terms represent linear equality constraints that must b e satis ed by a feasible so-
lution, i.e. the solution must satisfy the governing equati on, and the force should have
unit norm. The variables b(x) and a are Lagrange multipliers of these constraints, and
we assume thatw,a2 R and s(x),b(x),f(x) 2 C. An optimal solution necessarily has to
be a stationary point of (B.1) in order to ful ll the rst order o  ptimality conditions. This

implies that the rst variations of (B.1) with respect to its a rguments must vanish simul-

taneously,

n 0

hdL ,dsi= < tes+(iwl + AT)bdsi =0 8ds, (B.2a)
hdL ,dbi = <fh(iwl A )s f,dbig=0 8db, (B.2b)
hdL ,dai = da(hf,fi 1)=0 8da, (B.2c)
hdL ,dfi=<fhb 2af,dfig=0 8df, (B.2d)
which gives
2s=  (AT+iwl )b, (B.3a)
f=( A +iwl)s, (B.3b)
hf,fi =1, (B.3c)
b= 2af. (B.3d)

These equations represent in turn the adjoint and the direct equation, the normalization
and the optimality condition. From (B.3) the different step s of Algorithm 2 follows. Sub-
stituting (B.3a) and (B.3d) into (B.3b) gives

1
(A iw)(AT+iwl) = af, (B.4)
where the operator on the left-hand side is equal to (3.4), and a= G(w)?.
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