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Abstract. In this paper, we use Pacard-Xu’s methods to discuss the complex defor-
mation of constant scalar curvature metrics in the case of fixed and varying complex
structures. Moreover, we also discuss the complex deformation of Kähler-Ricci soli-
tons.
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1 Introduction

In [5, 6], Calabi introduced the extremal Kähler metrics, which is the citical point of the
L2 norm of the scalar curvature in the Kähler class. The existence and uniqueness of the
extremal Kähler metrics have been intensively studied during past decades( [2,7] and ref-
erence therein). By Kodaira-Spencer’s work [15], every Kähler manifold admits Kähler
metrics under small perturbation of the complex structure. A natural question is whether
Kähler-Einstein metrics or extremal Kähler metrics still exist when the complex structures
varies. In [17], Koiso showed that the Kähler-Einstein metrics can be perturbed under the
complex deformation of the complex structure when the first Chern class is zero or neg-
ative. When the first Chern class is positive, Koiso showed this result if the manifold
has no nontrivial holomorphic vector fields. In [11, 12], Lebrun-Simanca systematically
studied the deformation theory of extremal Kähler metrics and constant scalar curvature
metrics and they proved that on a Kähler manifold, the set of Kähler classes which admits
extremal metrics is open and the constant scalar curvature metrics can be perturbed un-
der some extra restrictions. Based on Lebrun-Simanca’s results, Apostolov-Calderbank-
Gauduchon-T. Friedman [1], Rollin-Simanca-Tipler [19, 20] further discussed extremal
metrics under the deformation of complex structures.
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The main goal of this paper is to give an alternative proof on the deformation of con-
stant scalar curvature metrics, which was discussed by [11] in the case of fixed complex
structure, and later by [1, 19] in the case of varying complex structures. Here we use the
method of Pacard-Xu in [18] in the context of constant mean curvature problems, which is
quite different from [11] in analysis. We will also discuss the deformation of Kähler-Ricci
solitons.

First we consider the case of fixed complex structure. The main difficulty of the de-
formation problems of the Kähler-Einstein metrics or constant scalar curvature metrics
is that the linearized equation has nontrivial kernel so that we cannot use the implicit
function theorem directly. For this reason, Koiso in [17] assumed that the manifold has
no nontrivial holomorphic vector fields, and Lebrun-Simanca in [11] used the surjective
version of the implicit function theorem so that the nondegeneracy of the Futaki invari-
ant must be assumed. The same difficulty appears in some other geometrical equations
such as the constant mean curvature equation. In [18], Pacard-Xu constructed a new
functional to solve the constant mean curvature equation and they removed the nonde-
generacy condition of Ye’s result in [24]. We observe that Pacard-Xu’s method can be
applied in our situation and we have the result:

Theorem 1.1. Let (M,ωg) be a compact Kähler manifold with a constant scalar curvature metric
ωg. There exists ǫ0 >0 and a smooth function

Φ : (0,ǫ0)×H1,1(M)→R

such that if β∈H1,1(M) has unit norm and satisfies Φ(t,β)=0 for some t∈(0,ǫ0) then M admits
a constant scalar curvature metric in the Kähler class [ωg+tβ]. Moreover,

(1) If β∈H1,1(M) is traceless, Φ has the expansion:

Φ(t,β)= t2
∫

M
(Πg(Rij̄β jī))

2ωn
g+O(t3).

(2) If β∈H1,1(M) is traceless and ωg is a Kähler-Einstein metric, then Φ has the expansion:

Φ(t,β)= t4
∫

M
(Πg(βij̄β jī))

2ωn
g+O(t5).

Here the operator Πg is the projection to the space of Killing potentials with respect to ωg.

Theorem 1.1 gives us some information in which directions we can find the constant
scalar curvature metrics. The function Φ is constructed by the Futaki invariant, and it
is automatically zero when the Futaki invariant vanishes. Thus, a direct corollary of
Theorem 1.1 is the following result, which was proved by Lebrun-Simanca using the
deformation theory of the extremal Kähler metrics and a result of Calabi in [6]:

Corollary 1.1. (Lebrun-Simanca [11]) Let (M,ωg) be a compact Kähler manifold with a
constant scalar curvature metric ωg. For any β∈H1,1(M), there is a ǫ0>0 such that if the
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Futaki invariant vanishes on the Kähler class [ωg+tβ] for some t∈ (0,ǫ0), then M admits
a constant scalar curvature metric on [ωg+tβ].

In fact, Theorem 1.1 gives us more information on the existence of constant scalar
curvature metrics on the class [ωg+tβ]. We expand the function Φ(t,β) with respect to t
at t=0,

Φ(t,β)=
m

∑
j=1

aj(β)tj+O(tm+1),

where aj(β) are some functions of β. If we assume some of aj(β) vanish, then we can get
“almost constant scalar curvature metrics” in the following sense:

Corollary 1.2. Let ωg be a constant scalar curvature metric. There are two positive con-
stants ǫ and C such that for any β∈H1,1(M) with

a1(β)= a2(β)= ···= am(β)=0,

M admits a Kähler metric ωt,β∈ [ωg+tβ] for t∈ (0,ǫ) satisfying

‖s(ωt,β)−s(t)‖Ck(M)≤Ct
m+1

2 ,

where s(t) is the average of the scalar curvature in [ωg+tβ].
The case of varying complex structures is more difficult. In general the extremal met-

rics may not be perturbed when the complex structure varies ( [4]). There are several
results on this problem recently. In [1] Apostolov-Calderbank-Gauduchon-T. Friedman
showed that the extremal metrics can be perturbed when the deformation of the com-
plex structure is invariant under the action of a maximal compact connected subgroup G
of the isometry group of the extremal metrics. Rollin-Simanca-Tipler extend this result
in [19] and they allow the group G extends partially to the complex deformation. Here
we combine Rollin-Simanca-Tipler and Pacard-Xu’s methods to get a similar result as in
the case of fixed complex structures.

Before stating the next result, we need to introduce some notations. Let (M, J,g,ωg)
be a compact Kähler manifold with a constant scalar curvature metric (g,ωg) and G the
identity component of the isometry group of (M,g). We assume that a compact con-
nected subgroup G′ of G acts holomorphically on a complex deformation (Jt,gt,ωt) and

we denote by BG′ the space of all such complex deformations. Let W2,k
G′ be the space of

G′-invariant functions in W2,k and Hz′0
g be the space of the space of holomorphic poten-

tials of the elements in the center z′0 of g′0, where g′0 is the ideal of the Killing vector fields
with zeroes in the Lie algebra of G′. With these notations, we have

Theorem 1.2. Let (M, J,g,ωg) be a compact Kähler manifold with a constant scalar curvature
metric ωg and

kerLg∩W2,k
G′ ⊂R⊕Hz′0

g . (1.1)
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For any (Jt,gt,ωt)∈BG′ , there is a constant ǫ0 >0 and a smooth function Ψ :BG′ →R such that
if

Ψ(Jt,gt,ωt)=0 (1.2)

for some t∈ (0,ǫ0), then M admits a G′-invariant constant scalar curvature metric in [ωt] with
respect to Jt. In particular, the conclusion holds if the condition (1.2) is replaced by the vanishing
of the Futaki invariant of [ωt].

The condition (1.1) coincides with the non-degeneracy condition of the relative Futaki
invariant, which is introduced by Rollin-Simanca-Tipler in [19]. Here we get the same
condition from a different point of view. We can get a similar result as Corollary 1 and a
similar expansion of the function Ψ as in Theorem 1.1, which are omitted since we will
not use them in this paper.

Finally, we will study the deformation of the Kähler-Ricci soliton. A Kähler-Ricci
soliton is a Kähler metric ωg in the first Chern class satisfying

Ric(ωg)−ωg=
√
−1∂∂̄θX ,

where θX is a holomorphic potential of a holomorphic vector field X. As Kähler-Einstein
metrics, the existence and uniqueness of Kähler-Ricci soliton are important and has been
studied by a series of papers [22, 23] etc. Since Kähler-Ricci solitons must be in the first
Chern class, there are no Kähler-Ricci solitons if we deform the Kähler class. However,
inspired by the extremal Kähler metrics, we can consider whether there is a metric satis-
fying the equation

s(ωg)−s=∆gθX,

where s is the average of the scalar curvature s. This metric is first introduced by Guan
in [9] and is called extremal solitons. Using the same idea as in [11,12], we have the result:

Theorem 1.3. Let (M, J,g,ωg) be a compact Kähler manifold with a Kähler-Ricci soliton (g,ωg).

1. If the complex structure is fixed, for any β∈H1,1(M) there is an extremal soliton in the
Kähler class [ωg+tβ] for small t.

2. For any (Jt,gt,ωt)∈BG where G is the identity component of the isometry group of (M,g),
M admits a G-invariant extremal soliton in [ωt] with respect to Jt.

Under the assumption of the second part of Theorem 1.3, if in addition [ωt] is the
first Chern class of (M, Jt), then [ωt] admits a Kähler-Ricci soliton. It is interesting to see
whether Theorem 1.3 holds for any extremal soliton. There is a technical difficulty in the
proof and we cannot overcome it here.

2 Deformation of cscK metrics

In this section, we will use the method of Pacard-Xu in [18] to solve the constant scalar
curvature equation and show that a small perturbation of the Kähler class under some
assumptions will admit a constant scalar curvature metric.
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2.1 Fixed complex structure

We follow Lebrun-Simanca’s notations in [11, 12]. Let (M, J,g,ωg) be a compact Kähler
manifold of complex dimension n with a constant scalar curvature metric ωg. By
Matsushima-Lichnerowicz theorem, the identity component G of the isometry group of
(M,g) is a maximal compact subgroup of the identity component Aut0(M, J) of the au-

tomorphism group Aut(M, J). Let W2,k
G (M) be the real k-th Sobolev space of G-invariant

real-valued functions in W2,k(M). By the Sobolev embedding theorem, the space W2,k(M)
is contained in Cl(M) if k > n+l. The space of real-valued ωg-harmonic (1,1) forms
on M is denoted by H1,1(M). Since the metric g is G-invariant, every g-harmonic form
β∈H1,1(M) is G-invariant. Let P(M,ωg) be the space of Kähler potentials of ωg and U
be a small neighborhood of the origin in W2,k

G (M). We can assume that U ⊂P(M,ωt) for
small t where ωt=ωg+tβ. Thus, for any function ϕ∈U the metric

ωt,ϕ=ωg+tβ+
√
−1∂∂̄ϕ,

is G-invariant.
Let h(M, J) be the space of holomorphic vector fields on (M, J). By Matsushima-

Lichnerowicz theorem, the Lie algebra h(M, J) can be decomposed as a direct sum

h(M, J)=h0(M, J)⊕a(M, J),

where a(M, J) consists of the autoparallel holomorphic vector fields of (M, J) and h0(M, J)
is the space of holomorphic vector fields with zeros. Let g the Lie algebra of G and g0 the
ideal of Killing vector fields with zeros. Any element ξ∈g0 corresponds to a holomorphic
vector field X= Jξ+

√
−1ξ, and we define a smooth function θX satisfying

iXωg=
√
−1∂̄θX ,

∫

M
θX ωn

g =0.

The function θX is called holomorphic potential of X with respect to ωg. Since g is G-
invariant, θX is a real-valued function. Let z⊂g denote the center of g and z0=z∩g0. Then
z0 corresponds precisely to the Killing vector fields in g0 whose holomorphic potentials
are G-invariant.

Now we choose a basis {ξ1,··· ,ξd} of z0 such that the functions {θ0,θ1,··· ,θd}, where
θ0=1 and θi is the holomorphic potential of the holomorphic vector fields Xi=Jξi+

√
−1ξi,

are orthonormal with respect to the L2 inner product induced by the metric g

〈 f ,g〉L2(ωg)=
1

Vg

∫

M
f gωn

g , f ,g∈C∞(M,R),

where Vg=
∫

M ωn
g . Using this product, the space W2,k

G has a decomposition

W2,k
G =Hg⊕H⊥

g,k,
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where Hg is spanned by the set {θ0,θ1,··· ,θd} over R. We define the associate projection
operator

Π̃g :W2,k
G →Hg

f →
d

∑
i=0

〈θi, f 〉L2(ωg)θi,

and the operator Π̃⊥
g = I−Π̃g.

For any ϕ∈U , we calculate the expansion of the scalar curvature of ωt,ϕ at (t,ϕ)=(0,0):

s(ωt,ϕ)= s(ωg)−
(

∆2
g ϕ+Rij̄ ϕjī+t∆gtrgβ+tRij̄β jī

)

+Qg(∇2 ϕ,tβ),

where Qg collects all the higher order terms. Note that trgβ is a constant since β is har-
monic. The linearized operator of s(ωt,ϕ) at (t,ϕ) = (0,0) is −Lg ϕ, where the operator
Lg ϕ is defined by

Lg ϕ=∆2
g ϕ+Rij̄ϕjī,

and for any f ∈kerLg we can associate a holomorphic vector field X f = J∇ f +
√
−1∇ f

which has nonempty zeros. In general, Lg has nontrivial kernel and it is difficult to solve
the constant scalar curvature equation.

Now we have the following result:

Theorem 2.1. Let (M,ωg) be a compact Kähler manifold with a constant scalar curvature metric
ωg. There exists ǫ0 >0 and a smooth function

Φ : (0,ǫ0)×H1,1(M)→R

such that if β∈H1,1(M) has unit norm and satisfies Φ(t,β)=0 for some t∈(0,ǫ0) then M admits
a constant scalar curvature metric in the Kähler class [ωg+tβ].

Proof. Consider the equation for (ϕ,Ξ̃)∈H⊥
g,k×Rd+1 :

s(ωt,ϕ)= 〈Ξ̃,Θ̃〉, (2.1)

where Θ̃=(θ0,θ1,··· ,θd) and Ξ̃=(c0,c1,··· ,cd)∈Rd+1 is a vector with

〈Ξ̃,Θ̃〉= c0+
d

∑
i=1

ciθi.

Note that if Eq. (2.1) holds, then c0 is the average of the scalar curvature and it only
depends on the Kähler class [ωt]. Applying the implicit function theorem, we have
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Lemma 2.1. Fix β∈H1,1(M). Then there exist ǫ0,C>0 such that for all t∈ (0,ǫ0) there exists
a unique solution (ϕt,β,Ξ̃t,β)∈H⊥

g,k+4×Rd+1 of Eq. (2.1) and satisfying the estimates

‖ϕt,β‖W2,k+4(M)≤Cǫ0, ‖Ξ̃t,β‖≤Cǫ0, (2.2)

where ‖Ξ̃‖ denotes the standard Euclidean norm of Ξ̃ in Rd+1.

Proof. We consider the operator

Π̃⊥
g s(ωt,ϕ) : (−ǫ,ǫ)×H⊥

g,k+4 →R.

Since the linearized operator at (t,ϕ)=(0,0)

DϕΠ̃⊥s(ωt,ϕ)|(0,0) :H⊥
g,k+4→H⊥

g,k

ψ→−Lgψ

is invertible, for small t there is a solution ϕt,β∈H⊥
g,k+4 such that Π̃⊥

g s(ωt,ϕt,β
)=0 and we

can find a vector Ξ̂t,β∈Rd+1 such that

s(ωt,ϕt,β
)= 〈Ξ̃t,β,Θ̃〉. (2.3)

The estimates in (2.2) follow directly from the implicit function theorem.

Now we want to know when the solution (ϕt,β,Ξ̃t,β) of (2.1) has constant scalar cur-
vature. It suffices to show that the vector Ξ̃t,β=(c0,c1,··· ,cd) satisfies ci=0 for all 1≤ i≤d.

Given β∈H1,1(M), the solution (ϕt,β,Ξ̃t,β) determines a holomorphic vector field

Xt,β=
d

∑
k=1

ck(t)Xk ∈h0(M, J), (2.4)

where Xk is the holomorphic vector field defined by θk and ci(t) are the entries of the
vector Ξ̃t,β = (c0(t),c1(t),··· ,cd(t)). For simplicity, we write ωt,β =ωt,ϕt,β

for short. Now

we define a function on (0,ǫ0)×H1,1(M) by

Φ(t,β)=
∫

M
Xt,βhωt,β

ωn
t,β,

where hωt,β
is determined by s(ωt,β)−c0(t) =∆ωt,β

hωt,β
. Note that the function Φ(t,β) is

exactly the Futaki invariant of (Xt,β,[ωt]), and it is zero if the Futaki invariant of [ωt] van-

ishes. Let Πg be the L2-projection from W2,k
G (M) to the subspace which is spanned by the

functions {θ1,··· ,θd}. We denote by Ξt,β =(c1,··· ,cd) the vector in Rd which removes c0

from Ξ̃t,β and Θ=(θ1,··· ,θd). With these notations, we have the lemma:
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Lemma 2.2. There is a ǫ0>0 such that, if t∈(0,ǫ0) and if β∈H1,1(M) with unit norm is a zero
of the function Φ(t,β) then ωt,β has constant scalar curvature.

Proof. Note that

Φ(t,β)=
∫

M
θt,β(s(ωt,β)−c0(t))ωn

t,β=
∫

M
θt,β〈Ξt,β,Θ〉ωn

t,β, (2.5)

where θt,β is the holomorphic potential of Xt,β with respect to the metric ωt,β under the
normalization condition

∫

M
θt,β ωn

t,β=0. (2.6)

We claim that there is a constant C independent of t and β such that

‖θt,β−〈Ξt,β,Θ〉‖L2(ωg)≤C ǫ0‖Ξt,β‖. (2.7)

In fact, by definition we have

iXt,β
ωg=

√
−1∂̄〈Ξt,β,Θ〉, iXt,β

ωt,β=
√
−1∂̄θt,β.

This implies that

√
−1∂̄(θt,β−〈Ξt,β,Θ〉)= iXt,β

(tβ+
√
−1∂∂̄ϕt,β)=

d

∑
k=1

ck(t)iXk
(tβ+

√
−1∂∂̄ϕt,β),

where we used the definition (2.4) of Xt,β. Since by Lemma 2.1 ‖ϕt,β‖W2,k+4(M)≤Cǫ0 for
any t∈ (0,ǫ0), we have

∣

∣

∣
∆g(θt,β−〈Ξt,β,Θ〉)

∣

∣

∣
=
∣

∣

∣∑
k

ck(t)trg

(

∂(iXk
(tβ+

√
−1∂∂̄ϕt,β))

)∣

∣

∣

≤Cǫ0‖Ξt,β‖,

which implies that
‖θt,β−〈Ξt,β,Θ〉‖L2(ωg)≤Cǫ0‖Ξt,β‖

by the eigenvalue decomposition of ∆g and the normalization condition (2.6). Thus, the
inequality (2.7) is proved.

Since {θ0,··· ,θd} is an orthonormal basis of Hg, we have

‖Ξt,β‖2=
∫

M
〈Ξt,β,Θ〉2ωn

g ≤C
∫

M
〈Ξt,β,Θ〉2 ωn

t,β, (2.8)

where we used the fact that ‖ϕ‖W2,k+4(M)≤Cǫ0 when t small by Lemma 2.1. The assump-
tion Φ(t,β)=0 together with (2.8) and (2.7) implies that

∫

M
〈Ξt,β,Θ〉2 ωn

t,β =
∫

M

(

〈Ξt,β,Θ〉−θt,β

)

〈Ξt,β,Θ〉ωn
t,β

≤C ǫ0 ‖Ξt,β‖·‖〈Ξt,β,Θ〉‖L2(ωg)

≤Cǫ0

∫

M
〈Ξt,β,Θ〉2 ωn

t,β.
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Thus, if ǫ0 is small enough we have Ξt,β =0. The lemma is proved.

Thus, the first part of Theorem 1.1 and Corollary 1 follow directly from Lemma 2.2.

Observe that we can expand the function Φ(t,β) with respect to t at t=0 :

Φ(t,β)= a1(β)t+a2(β)t2+a3(β)t3+···+am(β)tm+O(tm+1),

where aj(β) are the coefficients of tj. We want to ask what kind of Kähler metric exists if
we only assume the first several terms of ai(β) vanish.

Corollary 2.1. Let ωg be a constant scalar curvature metric. There are two constants ǫ,C> 0
such that for any harmonic form β∈H1,1(M) with unit norm and

a1(β)= a2(β)= ···= am(β)=0, (2.9)

M admits a Kähler metric ωt,β∈ [ωt+tβ] for t∈ (0,ǫ0) satisfying

‖s(ωt,β)−c0(t)‖Ck(M)≤Ct
m+1

2 . (2.10)

Proof. We follow the notations in Lemma 2.2. By the assumption (2.9), there are two
constants ǫ0,C>0 such that for any t∈ (0,ǫ0) we have

|Φ(t,β)|≤Ctm+1. (2.11)

By equality (2.5) and (2.7) we have

∣

∣

∣
Φ(t,β)−

∫

M
〈Ξt,β,Θ〉2 ωn

t,β

∣

∣

∣

≤ Cǫ0‖Ξt,β‖·‖〈Ξt,β,Θ〉‖L2(ωg)≤Cǫ0

∫

M
〈Ξt,β,Θ〉2 ωn

t,β ,

where we used (2.8) in the last inequality. Thus, there is a constant ǫ0 > 0 such that for
any t∈ (0,ǫ0) we have

∫

M
〈Ξt,β,Θ〉2 ωn

t,β≤C ·Φ(t,β)≤C ·tm+1 ,

and hence
d

∑
i=1

ci(t)
2=

∫

M
〈Ξt,β,Θ〉2 ωn

g ≤C
∫

M
〈Ξt,β,Θ〉2 ωn

t,β≤Ctm+1. (2.12)

This implies that for each i when t is small, |ci(t)|≤Ct
m+1

2 . Since ωt,β is a solution of (2.1),
we have

‖s(ωt,β)−c0(t)‖Ck(M)=‖
d

∑
i=1

ci(t)θi‖Ck(M)≤Ct
m+1

2 .

The corollary is proved.
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Now we want to compute the coefficients of t in the expansion of the function Φ. Let
ωg be a constant scalar curvature metric on M and (ϕt,β,Ξ̃t,β) the solution of (2.1). Since
the operator

Lg :H⊥
g,k+4→H⊥

g,k

is self-adjoint and invertible, we denote by Gg=L−1
g the inverse operator of Lg. Without

loss of generality, we can assume that β is traceless with respect to the metric g. Other-
wise, we can consider the metric (1+t·trgβ)ωg which still has constant scalar curvature.

Let H1,1
0 (M) be the space of traceless harmonic (1,1) form with respect to the metric g on

M. Computing the first derivative of S(t) := s(ωt,β)−〈Ξ̃t,β,Θ̃〉 with respect to t, we have

Lemma 2.3. For β∈H(1,1)
0 , we have the following:

〈Ξ̃′(0),Θ̃〉=−Π̃g(Rij̄β jī),

ϕ′(0)=−GgΠ̃⊥
g (Rij̄β jī),

c′0(0)=
1

Vg

∫

M
Rij̄β jī ω

n
g ,

where we write f ′(t)= ∂ f
∂t for simplicity.

Proof. Since S(t)=0 for t∈ (0,ǫ0), we have

0=S′(t)=−∆2
t ϕ′(t)−Rij̄(t)ϕ′

jī(t)−Rij̄(t)β jī−〈Ξ̃′
t,β(t),Θ̃〉. (2.13)

Projecting to the space Hg when t=0, we have

0= Π̃g(S
′(t))(0)=−Π̃g(Rij̄β jī)−〈Ξ̃′

t,β(0),Θ̃〉,
which implies that

〈Ξ̃′
t,β(0),Θ̃〉=−Π̃g(Rij̄β jī).

On the other hand, we project (2.13) to the space H⊥
g,k and we have

0= Π̃⊥
g (S

′(t))(0)=−Lg ϕ′(0)−Π̃⊥
g (Rij̄β jī).

This together with ϕ′(0)∈H⊥
g,k+4 implies that

ϕ′(0)=−GgΠ̃⊥
g (Rij̄β jī).

Now we calculate c′0(t). Note that c0(t) only depends on the Kähler class [ωg+tβ], we

compute it using the metric ωt=ωg+tβ. Since ∂
∂t ωn

t

∣

∣

∣

t=0
=trωg βωn

g =0, we have V ′
t =0 and

c′0(0)=
1

Vg

∫

M

∂

∂t
s(ωt)

∣

∣

∣

t=0
ωn

g =
1

Vg

∫

M
Rij̄β jī ω

n
g .

The lemma is proved.
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Corollary 2.2. If β∈H1,1
0 (M), then the function Φ can be expanded as

Φ(t,β)= t2
∫

M
(Πg(Rij̄β jī))

2+O(t3). (2.14)

Proof. Since θt,β(0)=0 and Ξt,β(0)=0, we have Φ′(0)=0. Direct calculation shows

Φ′′(0)=
∫

M
2θ′t,β(0)〈Ξ′

t,β(0),Θ〉ωn
g . (2.15)

Taking the derivative with respect to t, we have

√
−1∂̄θ′t,β(0)=

(

iX′
t,β

ωt,β+iXt,β
ω′

t,β

)∣

∣

∣

t=0
=

d

∑
k=1

c′k(0)iXk
ωg=

√
−1

d

∑
k=1

c′k(0)∂̄θk,

which implies that

θ′t,β(0)=
d

∑
k=1

c′k(0)θk = 〈Ξ′
t,β(0),Θ〉. (2.16)

This together with the equality (2.15) and Lemma 2.3 implies that

Φ′′(0)=2
∫

M
(〈Ξ′

t,β(0),Θ〉)2 ωn
g =2

∫

M
(Πg(Rij̄β jī))

2.

The corollary is proved.

If ωg is a Kähler-Einstein metric, the first term of the right hand side of (2.14) auto-
matically vanishes. In this case, it is not difficult to expand Φ(t,β) for more terms.

Lemma 2.4. If β∈H1,1
0 (M) and satisfies Rij̄β jī =0, then we have

〈Ξ̃′′
t,β(0),Θ̃〉= Π̃g(2Rij̄β jk̄βkī),

ϕ′′(0)=GgΠ̃⊥
g (2Rij̄β jk̄βkī),

c′′0 (0)=
1

Vg

∫

M
2Rij̄β jk̄βkī ω

n
g .

Proof. Following the proof of Lemma 2.3 we have

S′′(t) =(βij̄+ϕ′
ij̄)(∆t ϕ′)jī+∆t((βij̄+ϕ′

ij̄)ϕ′
jī)−∆2

t ϕ′′

+(∆t ϕ′)ij̄ ϕ
′
jī−Rij̄(t)ϕ′′

jī+2Rij̄ ϕ
′
jk̄(β+∇2 ϕ′)kī+(∆ϕ′)ij̄β jī

+Rij̄β jk̄(β+∇2Dt ϕ)kī+Rij̄βkī(β+∇2Dt ϕ)jk̄−〈Ξ̃′′
t,β,Θ̃〉.
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Thus, projecting to Hg and H⊥
g,k we have

0= Π̃g(S
′′(t))(0)= Π̃g(2Rij̄β jk̄βkī)−〈Ξ̃′′

t,β(0),Θ̃〉,

0= Π̃⊥
g (S

′′(t))(0)=−Lg ϕ′′+Π̃⊥
g (2Rij̄β jk̄βkī).

Moreover, we calculate c′′0 (0) as in the proof of Lemma 2.3

c′′0 (0)=
1

Vg

∫

M
R(ωg+tβ)′′

∣

∣

∣

t=0
ωn

g =
1

Vg

∫

M
2Rij̄β jk̄βkī ω

n
g .

The lemma is proved.

Corollary 2.3. If ωg is a Kähler-Einstein metric and β∈H1,1
0 (M), then we have

Φ(t,β)= t4
∫

M
(Πg(Rij̄β jk̄βkī))

2 ωn
g+O(t5).

Proof. By Lemma 2.3, we have

〈Ξ̃′
t,β(0),Θ̃〉= ϕ′(0)= c′0(0)=0.

Thus, Eq. (2.16) implies that θ′t,β(0)=0 and by direct calculation we have

Φ′′′
t (0)=3

∫

M

(

θ′′t,β(0)〈Ξ′
t,β(0),Θ〉+θ′t,β(0)〈Ξ′′

t,β(0),Θ〉
)

ωn
g =0.

On the other hand, by Lemma 2.4 we have

√
−1∂̄θ′′t,β(0)= iX′′

t,β(0)
ωg=

d

∑
k=1

c′′k (0)iXk
ωg=

√
−1∂̄

( d

∑
k=1

c′′k (0)θk

)

, (2.17)

which implies that

θ′′t,β(0)= 〈Ξ′′
t,β(0),Θ〉. (2.18)

Thus, by tedious calculation we have

Φ
(4)
t (0)=6

∫

M
θ′′t,β(0)〈Ξ′′

t,β(0),Θ〉ωn
g =24

∫

M
(Πg(Rij̄β jk̄βkī))

2 ωn
g .

The corollary is proved.
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2.2 Varying complex structures

In this section, we will consider the deformation of constant scalar curvature metrics
when the complex structure varies. Let (M, J,g,ωg) be a compact Kähler manifold (M, J)
with a Kähler metric g and the associate Kähler form ωg. Let Jt be a smooth family of
complex structures with J0= J. By Kodaira’s theorem in [16] there exists a smooth family
of Kähler metric gt with g0 = g which is compatible with the complex structure Jt for
small t. Let ωt be the associate Kähler form of gt with respect to the complex structure
Jt. The triple (Jt,gt,ωt) is called a complex deformation of (J,g,ωg). Given a complex
deformation (Jt,gt,ωt), we want to know whether there exists a constant scalar curvature
metric in the Kähler class ([ωt], Jt) if we assume that ωg is a constant scalar curvature
metric on (M, J).

Since g is a constant scalar curvature metric, the identity component G of the isom-
etry group of (M,g) is a maximal compact subgroup of Aut(M,g) by Lichnerowicz-
Matsushima theorem. In general the action of the group G may not extend to (M, Jt).
We follow the idea of Rollin-Simanca-Tipler in [19] to assume that a compact connected
subgroup G′ of G can extend to (M, Jt) and G′ acts holomorphically on the complex defor-
mation (Jt,gt,ωt). We denote by BG′ the space of complex deformations (Jt,gt,ωt) which

allow the holomorphic action of G′. We denote by W2,k
G′ (M) the subspace of G′-invariant

functions in W2,k(M) and U a neighborhood of the origin in W2,k
G′ (M). For any ϕ ∈ U ,

we compute the expansion of the scalar curvature of the metric ωt,ϕ =ωt+
√
−1∂t∂̄t ϕ at

(t,ϕ)=(0,0) :

Lemma 2.5. Suppose that ∂ωt/∂t=ηt . We have

s(ωt,ϕ)= s(ωg)−Lg ϕ−t
(

∆gtrωg(η+S(ϕ))+Rij̄(η+S(ϕ))jī+trg(Slogdetg)
)

+Q,

where Q collects all the higher order terms and the operator S is given by S= 1
2 dJ′t(0)d f .

Proof. For any smooth function f , we define the operator

St( f ) :=
∂

∂t

√
−1∂t∂̄t( f )=

1

2
dJ′td f ,

where we used the equality
√
−1∂t∂̄t =

1
2 dJtd. Note that

∂

∂t
ωt,ϕ=ηt+St(ϕ), Dϕωt,ϕ(ψ)=

√
−1∂t ∂̄tψ.

The derivatives of the scalar curvature are given by

∂

∂t
s(ωt,I,ϕ)=−(ηij̄+St,ij̄(ϕ))Rjī−gij̄St,ij̄(logdetg)−∆ttrωt,ϕ(η+St(ϕ)),

Dϕs(ωt,I,ϕ)(ψ)=−Rij̄ψjī−∆2
t ψ.

Thus, the lemma follows directly.
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As in Section 2, we define g(resp. g′) the Lie algebra of G(resp. G′), and g0 (resp. g′0) the
ideal of Killing vector fields with zeros in g (resp. g′). The center of g0(resp. g′0) is denoted
by z0(resp. z′0). Each element of z0(resp. z′0) is of the form J∇ f for a G(resp. G′)-invariant,

real-valued function f . Let Hg′0
g (resp. Hz′0

g ) the space of holomorphic potentials of the

Killing vector fields in g′0 (resp. z′0) and it is easy to see that the space Hz′0
g is identified to

the G′-invariant holomorphic potentials of Hg′0
g . Using the L2 inner product induced by

g, the space W2,k
G′ (M) has the orthogonal decomposition

W2,k
G′ (M)=Hg⊕H⊥

g,k,

where Hg=R⊕Hz′0
g and we assume Hg is spanned by an orthonormal basis {θ0,θ1,··· ,θd}

where θ0 =1 with respect to the induced L2 norm of the metric g. Let Π̃g and Π̃⊥
g be the

L2-orthogonal projection onto Hg and H⊥
g,k respectively. With these notations, we have

the result:

Theorem 2.2. Let g be a constant scalar curvature metric on M with

kerLg∩W2,k
G′ ⊂R⊕Hz′0

g . (2.19)

For any (Jt,gt,ωt)∈BG′ , there is a constant ǫ0 >0 and a smooth function Ψ :BG′ →R such that
if Ψ(Jt,gt,ωt)= 0 for some t∈ (0,ǫ0), then M admits a G′-invariant constant scalar curvature
metric in [ωt] with respect to Jt.

Proof. First, we want to find the solution (ϕ,Ξ̃)∈H⊥
g,k+4×Rd+1 of the equation

s(ωt,ϕ)= 〈Ξ̃,Θ̃〉, (2.20)

where Θ̃=(θ0,θ1,··· ,θd). As in the proof of Lemma 2.1, we can use the implicit function
theorem and Lemma 2.5 to show that

Lemma 2.6. Suppose that the condition (2.19) holds. For any (Jt,gt,ωt)∈BG′ , there exist C,ǫ0>0
such that for all t∈ (0,ǫ0), there is a solution (ϕt,Ξ̃t)∈H⊥

g,k+4×Rd+1 which satisfies Eq. (2.20)

and

‖ϕt‖W2,k+4(M)≤Cǫ0, ‖Ξ̃t‖≤Cǫ0. (2.21)

Proof. The linearization of the operator Π̃⊥
g s(ωt,ϕ) : (−ǫ,ǫ)×H⊥

g,k+4→R at (t,ϕ)=(0,0) is

given by

DϕΠ̃⊥
g s(ωt,ϕ)|(0,0)(ψ)=−Lgψ :H⊥

g,k+4→W2,k
G′ ,

which is invertible from H⊥
k+4 to H⊥

g,k if and only if the condition (2.19) holds. Thus, the

lemma follows directly from the implicit function theorem.
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Let ξi(1 ≤ i ≤ d) be the Killing vector fields in z0 with the holomorphic potentials
θi(1≤ i≤d). Since (Jt,gt,ωt)∈BG′ , the vector fields Xt

i := Jtξi+
√
−1ξi are holomorphic on

(M, Jt) and the holomorphic potential of Xt
i with respect to ωt,ϕt is given by a real-valued

function θt
i satisfying

iXt
i
ωt,ϕt =

√
−1∂̄tθ

t
i ,

∫

M
θt

i ωn
t,ϕt

=0. (2.22)

For the vector Ξ̃t = (c0(t),c1(t),··· ,cd(t)) ∈ Rd+1 obtained in Lemma 2.6, we define the
holomorphic vector field

Xt=
d

∑
i=1

ci(t)X
t
i ∈h0(M, Jt).

Let θt be the holomorphic potential of Xt with respect to ωt,ϕt and

Θ=(θ1,··· ,θd), Ξt=(c1(t),··· ,cd(t)),

where ci(t) are the entries of Ξ̃t.

Lemma 2.7. If (Jt,gt,ωt)∈BG′ satisfies

‖Jt− J0‖C1(M)≤Cǫ0, t∈ (0,ǫ0), (2.23)

then there is a constant C1>0 such that for all t∈ (0,ǫ0) we have

‖θt−〈Ξt,Θ〉‖L2(ωg)≤C1ǫ0‖Ξt‖. (2.24)

Proof. Define the vector field X̂t =∑
d
k=1 ck(t)Xi ∈h0(M, J) where ck(t) is given by Lemma

2.6. By definition, we have

iX̂t
ωg=

√
−1∂̄〈Ξt,Θ〉, iXt ωt,ϕt =

√
−1∂̄tθt,

where ∂̄ denotes the operator on (M, J). We want to compute the difference of the two
functions θt and 〈Ξt,Θ〉 :

√
−1∂̄(〈Ξt,Θ〉−θt) = iX̂t

ωg−iXt ωt,ϕt+
√
−1(∂̄t− ∂̄)θt

=
d

∑
k=1

ck(t)(iXk
ωg−iXt

k
ωt,ϕt)+

√
−1(∂̄t− ∂̄)θt. (2.25)

Note that the estimate ‖ωg−ωt,ϕt‖W2,k+2(M)≤Cǫ0 obtained in Lemma 2.6 implies

‖∂
(

iXk
ωg−iXt

k
ωt

)

‖C0

= ‖i∂(Xk−Xt
k)

ωg+i∂Xt
k
(ωg−ωt,ϕt)+iXt

k
∂(ωg−ωt,ϕt)‖C0 ≤Cǫ0, (2.26)
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where we used the estimates

‖∂(Xt
k−Xk)‖C0 =‖∂(Jt− J0)ξk‖C0 ≤Cǫ0, t∈ (0,ǫ0).

Now we estimate θt. Note that we have

∆ωt,ϕt
θt =

√
−1∂t(iXt ωt,ϕt)=

√
−1

d

∑
k=1

ck(t)∂t(iXt ωt,ϕt)

and ‖ωt,ϕt−ωg‖C2,α≤Cǫ0 if we choose k sufficiently large in Lemma 2.6, there is a constant
C>0 independent of t such that

‖θt‖C2(M,ωg)≤C‖Ξt‖. (2.27)

Therefore, we have

∣

∣

∣
∂(∂̄t−∂)θt

∣

∣

∣
=

1

2

∣

∣

∣
∂(Jt− J0)dθt

∣

∣

∣
≤Cǫ0 ·‖Ξt‖, t∈ (0,ǫ0), (2.28)

where we used the equality ∂̄t f = 1
2(d f −

√
−1Jtd f ) and the inequality (2.27). Combining

the estimates (2.25), (2.26) and (2.28), we have

∣

∣

∣
∆g(〈Ξt,Θ〉−θt)

∣

∣

∣
≤Cǫ0 ·‖Ξt‖.

This together the eigenvalue decomposition and the normalization condition (2.22) gives
(2.24). The lemma is proved.

Now we define the function Ψ :BG →R by

Ψ(Jt,gt,ωt)=
∫

M
Xtht,ϕt ωn

t,ϕt
=

∫

M
θt(s(ωt,ϕ)−c0(t))ωn

t,ϕt
,

where c0(t) is the average of s(ωt,ϕt) and ht,ϕt is given by s(ωt,ϕt)−c0(t)=∆ωt,ϕt
ht,ϕt . As

in Section 2, we have the following result whose proof is omitted.

Lemma 2.8. There exists ǫ0 > 0 such that if the complex deformation (Jt,gt,ωt)∈BG satisfies
Ψ(Jt,gt,ωt)=0 for some t∈ (0,ǫ0), then ωt,ϕt is a constant scalar curvature metric with respect
to the complex structure Jt.

Theorem 2.2 then follows from the above results.
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3 Deformation of Kähler-Ricci solitons

Let (M, J) be a compact Kähler manifold with a Kähler Ricci soliton gKS with respect to
the holomorphic vector field X :

Ric(ωKS)−ωKS=
√
−1∂∂̄θX,

where θX is the holomorphic potential of X with respect to ωKS. We would like to ask
whether we can perturb the Kähler Ricci soliton under complex deformation of the com-
plex structure. Inspired by the discussion before, for any Kähler class [ωg]we consider
the metric ωϕ∈ [ωg] satisfying the equation of extremal solitons

s(ωϕ)−s=∆ϕθX(ωϕ). (3.1)

By the ∂∂̄-Lemma, we can easily check that

Lemma 3.1. If ωg ∈ 2πc1(M) satisfies the equation (3.1) with respect to a holomorphic vector
field X, then ωg is a Kähler-Ricci soliton with respect to X.

By the equation (3.1), if [ωg] admits an extremal soliton ωϕ and the Futaki invariant
vanishes on [ωg], then ωϕ must be a constant scalar curvature metric. In fact,

f (X,[ω0])=
∫

M
θX(ϕ)∆ϕθX(ϕ)ωn

ϕ=0

implies that θX(ϕ) is a constant.

Theorem 3.1. If ωg be a Kähler Ricci soliton with respect to X on M, then for any β∈H1,1(M)
there is an extremal soliton in the Kähler class [ω0+tβ] for small t.

Proof. We follow Lebrun-Simanca’s arguments in [11, 12]. Let g be a Kähler-Ricci soliton.
By Theorem A in the appendix of [22] the identity component G of the isometry group
of (M,g) is a maximal compact subgroup of the automorphism group Aut(M). As in

previous sections, we let W2,k
G be the real k-th Sobolev space of G-invariant real-valued

functions in W2,k. Let g the Lie algebra of G and z⊂ g denote the center of g. We denote
by g0 the ideal of Killing vector fields with zeros and z0 = z∩g0. By Lemma A.2 in the
appendix of [22], each element of z0 is of the form J∇ f , where f is a G-invariant real-
valued function satisfying the equation

Lg( f )= f ī j̄dzī⊗dz j̄ =0.

We choose a basis {ξ1,··· ,ξd} of z0 such that the functionals {θ0,θ1,··· ,θd}, where θ0 = 1
and θi(1≤ i≤ d) is the holomorphic potential of the holomorphic vector fields Xi = Jξi+√
−1ξi, are orthonormal with respect to the L2 inner product

〈 f ,g〉L2(ωg)=
1

Vg

∫

M
f geθX ωn

g , f ,g∈C∞(M,R),
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where Vg is the volume of (M,g). Using this product, the space W2,k
G has a decomposition

W2,k
G =Hg⊕H⊥

g,k, where Hg is spanned by the set {θ0,θ1,··· ,θd} over R. We define the

associate project operator Πg and Π⊥
g , and we can assume that X1=X which defines the

Kähler-Ricci soliton ωg.
Now we consider the equation for ϕ∈U :

S(t,ϕ) :=Π⊥
g Π⊥

ϕ Gϕ(s(ωt,ϕ)−s(t))=0,

where Gϕ is the Green operator with respect to the metric ωt,ϕ. If U is small enough,
S(t,ϕ)=0 if and only if ωt,ϕ is an extremal soliton. We calculate the variation of S(t,ϕ) at
(t,ϕ)=(0,0) :

DϕS(t,ϕ)|(0,0)(ψ)

=−Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s)+Π⊥

g Dϕ(Gϕ(s(ωt,ϕ)−s))|(0,0). (3.2)

Since g is a Kähler Ricci soliton, we have Gg(s(ωg)−s)= θX . Note that

ΠϕθX =
d

∑
i=0

〈θi,ϕ,θX〉L2(ωt,ϕ)θi,ϕ,

where θi,ϕ is an orthonormal basis of Hg. Now we choose the functions

θ0,ϕ =1, θi,ϕ =
θ̃i,ϕ

‖θ̃i,ϕ‖L2(ωϕ)

, 1≤ i≤d,

where θ̃i,ϕ are defined by the equalities iXi
ωt,ϕ =

√
−1∂̄θ̃i,ϕ such that {θ0,ϕ,··· ,θd,ϕ} forms

an orthonormal basis of Hϕ, which is the space defined similar to Hg using the metric
ωϕ. Thus, we have

−Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s)=−Π⊥

g (DϕΠϕ)|(0,0)θX

= −〈 θX

‖θX‖L2

,θX〉L2(ωg)Π
⊥
g

1

‖θX‖L2

Dϕθ̃1,ϕ|(0,0)=−Π⊥
g Dϕθ̃1,ϕ|(0,0).

By the definition of θ̃1,ϕ, we have

iX Dϕωt,ϕ|(0,0)=
√
−1∂̄Dϕθ̃1,ϕ,

which implies that X(ψ)=Dϕθ̃1,ϕ|(0,0)(ψ). Combining the above equalities, we have

−Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s)=−Π⊥

g X(ψ). (3.3)

Now we calculate the second term of the right hand side of (3.2). Let Aϕ=Gϕ(s(ωt,ϕ)−s),
we have

∆ϕ Aϕ= s(ωt,ϕ)−s.
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Differentiating this equation with respect to ϕ at (t,ϕ)=(0,0), we have

−ψij̄θX,jī+∆gDϕ Aϕ|(0,0)=−∆2
gψ−Rij̄ψjī.

Combining this with (3.2) we have

Π⊥
g Dϕ(Gϕ(s(ωt,ϕ)−s))|(0,0)= −Π⊥

g Gg

(

∆2
gψ+Rij̄ψjī−ψij̄θX,jī

)

. (3.4)

Combining the equalities (3.2)-(3.4), we have

DϕS(t,ϕ)|(0,0)(ψ)= −Π⊥
g

(

Gg(∆
2
gψ+Rij̄ψjī−ψij̄θX,jī)+X(ψ)

)

= −Π⊥
g

(

∆gψ+ψ+X(ψ)
)

,

here we used the assumption that g is a Kähler-Ricci soliton. Note that by Lemma 2.2
in [22] the function ψ satisfies ∆gψ+ψ+X(ψ)=0 if and only if Π⊥

g ψ=0 Thus, the operator

DϕS(t,ϕ)|(0,0) :H⊥
g,k+2→H⊥

g,k

is invertible and by the implicit function theorem there is a solution ϕt ∈H⊥
g,k+2 satisfies

the equation S(t,ϕt)=0 when t is small. The theorem is proved.

Remark 3.1. It is interesting to ask whether Theorem 3.1 holds for any extremal soliton
g. To prove this, it suffices to show that any function ψ with

ψijj̄ ī+θX,īψikk̄ =0

must satisfy the equation ψī j̄ =0.

In fact, if g is an extremal soliton, we have

Gg(∆
2
gψ+Rij̄ψjī−ψij̄θX,jī)+X(ψ)=Gg(∆

2
gψ+Rij̄ψjī−θij̄ψjī+∆g(Xψ))

= Gg(∆
2
gψ+Rij̄ψjī+s,īψi+θX,īψikk̄)=Gg(ψijj̄ī+θX,īψikk̄),

where we used the equality

∆g(Xψ)=
1

2

(

(θīψi)jj̄+(θīψi) j̄j

)

= θī jψij̄+θī(∆ψ)i

= θī jψij̄+θī(ψikk̄−Rij̄ψj)= θī jψij̄+θīψikk̄+s,īψi.

Here we used the extremal soliton equation in the last equality.
Next, we use the similar method in Section 2 to consider the case when the complex

structure varies . Let (g,ωg) is a Kähler-Ricci soliton on (M, J) and (Jt,gt,ωt) a complex
deformation of (J,g,ωg). We assume (Jt,gt,ωt)∈BG where G is the identity component
of the isometry group of (M,g) and BG denotes all the G invariant complex deformation
of (J,g,ωg). With these notations, we have the result:
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Theorem 3.2. Let (M, J,g,ωg) be a compact Kähler manifold with a Kähler-Ricci soliton (g,ωg).
For any (Jt,gt,ωt)∈BG, M admits a G-invariant extremal soliton in [ωt] with respect to Jt for
small t.

Proof. The proof is more or less the same as in Theorem 3.1, and we only sketch it here.
For any (Jt,gt,ωt)∈BG, we consider the equation

S(t,ϕ) :=Π⊥
g Π⊥

ϕ Gϕ(s(ωt,ϕ)−s(t))=0, (3.5)

where Gϕ and Π⊥
ϕ are the operators with respect to the metric ωt,ϕ = ωt+

√
−1∂t ∂̄t ϕ.

Let {ξ1,··· ,ξd} be a basis of z0. Since (Jt,gt,ωt)∈BG, the vector fields {Xt
1,··· ,Xt

d} where

Xt
i=Jtξi+

√
−1ξi are holomorphic vector fields on (M, Jt) and form a basis of h0(M, Jt). Let

θ̃t
i (1≤ i≤d) be the holomorphic potentials of Xt

i with respect to ωt,ϕ and we assume that
the set {θ̃t

0, θ̃t
1,··· , θ̃t

d} where θ̃t
0=1 are orthonormal and spans the space Hϕ. Differentiating

the equation (3.5) with respect to ϕ, we have

DϕS(t,ϕ)|(0,0)(ψ)

= −Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s)+Π⊥

g Dϕ(Gϕ(s(ωt,ϕ)−s))|(0,0).

Since Dϕωt,ϕ|(0,0)(ψ)=
√
−1∂∂̄ψ and DϕXt|(0,0)=0, we still get the equality (3.3). By the

same calculation as in Theorem 3.1, we have the operator

DϕS(t,ϕ)|(0,0)(ψ)=−Π⊥
g

(

∆gψ+ψ+X(ψ)
)

which is invertible from H⊥
g,k+2 to H⊥

g,k. The theorem is proved.

Here we give an easy example on the existence of extremal solitons.

Example 3.1. Let π : M̂ → M be the blowup of M =CP2 at a point p. Then M̂ has no
Kähler-Einstein metrics but admits a Kähler-Ricci soliton in 2πc1(M̂). Thus, M̂ admits
extremal solitons in the Kähler class 2πc1(M̂)−t[E] for t∈ (0,ǫ) where E=π−1(p) is the
exceptional divisor and ǫ>0 is small.
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