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Abstract. In this paper, we use Pacard-Xu’s methods to discuss the complex defor-
mation of constant scalar curvature metrics in the case of fixed and varying complex
structures. Moreover, we also discuss the complex deformation of Kéhler-Ricci soli-
tons.
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1 Introduction

In [5, 6], Calabi introduced the extremal Kdhler metrics, which is the citical point of the
L? norm of the scalar curvature in the Kahler class. The existence and uniqueness of the
extremal Kédhler metrics have been intensively studied during past decades( [2,7] and ref-
erence therein). By Kodaira-Spencer’s work [15], every Kdhler manifold admits Kadhler
metrics under small perturbation of the complex structure. A natural question is whether
Kéhler-Einstein metrics or extremal Kdhler metrics still exist when the complex structures
varies. In [17], Koiso showed that the K&dhler-Einstein metrics can be perturbed under the
complex deformation of the complex structure when the first Chern class is zero or neg-
ative. When the first Chern class is positive, Koiso showed this result if the manifold
has no nontrivial holomorphic vector fields. In [11,12], Lebrun-Simanca systematically
studied the deformation theory of extremal Kédhler metrics and constant scalar curvature
metrics and they proved that on a Kdhler manifold, the set of Kéhler classes which admits
extremal metrics is open and the constant scalar curvature metrics can be perturbed un-
der some extra restrictions. Based on Lebrun-Simanca’s results, Apostolov-Calderbank-
Gauduchon-T. Friedman [1], Rollin-Simanca-Tipler [19, 20] further discussed extremal
metrics under the deformation of complex structures.
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The main goal of this paper is to give an alternative proof on the deformation of con-
stant scalar curvature metrics, which was discussed by [11] in the case of fixed complex
structure, and later by [1,19] in the case of varying complex structures. Here we use the
method of Pacard-Xu in [18] in the context of constant mean curvature problems, which is
quite different from [11] in analysis. We will also discuss the deformation of Kadhler-Ricci
solitons.

First we consider the case of fixed complex structure. The main difficulty of the de-
formation problems of the Kihler-Einstein metrics or constant scalar curvature metrics
is that the linearized equation has nontrivial kernel so that we cannot use the implicit
function theorem directly. For this reason, Koiso in [17] assumed that the manifold has
no nontrivial holomorphic vector fields, and Lebrun-Simanca in [11] used the surjective
version of the implicit function theorem so that the nondegeneracy of the Futaki invari-
ant must be assumed. The same difficulty appears in some other geometrical equations
such as the constant mean curvature equation. In [18], Pacard-Xu constructed a new
functional to solve the constant mean curvature equation and they removed the nonde-
generacy condition of Ye’s result in [24]. We observe that Pacard-Xu’s method can be
applied in our situation and we have the result:

Theorem 1.1. Let (M,wyg) be a compact Kithler manifold with a constant scalar curvature metric
wq. There exists €g > 0 and a smooth function

®:(0,e0) x HMH (M) =R

such that if B€ HY (M) has unit norm and satisfies ®(t,8) =0 for some t€ (0,€o) then M admits
a constant scalar curvature metric in the Kihler class [wg+tB]. Moreover,

(1) If Be HYY(M) is traceless, ® has the expansion:
O(t,B)=F | (Iy(RyB;))2wi+O(F).

(2) If Be V(M) is traceless and wy is a Kiihler-Einstein metric, then ® has the expansion:
O(t8) =t [ (11;(B8;) w0y +O(F).

Here the operator 1l is the projection to the space of Killing potentials with respect to wy.

Theorem 1.1 gives us some information in which directions we can find the constant
scalar curvature metrics. The function ® is constructed by the Futaki invariant, and it
is automatically zero when the Futaki invariant vanishes. Thus, a direct corollary of
Theorem 1.1 is the following result, which was proved by Lebrun-Simanca using the
deformation theory of the extremal Kédhler metrics and a result of Calabi in [6]:

Corollary 1.1. (Lebrun-Simanca [11]) Let (M,w,) be a compact Kéhler manifold with a
constant scalar curvature metric wg. For any g€ H!1 (M), there is a €y > 0 such that if the
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Futaki invariant vanishes on the Kahler class [wg+-tf] for some t € (0,€9), then M admits
a constant scalar curvature metric on [wg-l-tﬁ].

In fact, Theorem 1.1 gives us more information on the existence of constant scalar
curvature metrics on the class [w +B]. We expand the function ®(t,8) with respect to
att=0,

O(t,8)= Y a;(B)F +O("),
j=1

where a;(B) are some functions of B. If we assume some of a;() vanish, then we can get
“almost constant scalar curvature metrics” in the following sense:

Corollary 1.2. Let w, be a constant scalar curvature metric. There are two positive con-
stants € and C such that for any g€ H! (M) with

a1(B)=ax(B)=---=an(p)=0,
M admits a Kéhler metric wy g € [wg+tp] for t € (0,€) satisfying

m+1

Hs<wt,ﬁ) —s(t) Hck(M) <Ctz,

where s(t) is the average of the scalar curvature in [wq +£p].

The case of varying complex structures is more difficult. In general the extremal met-
rics may not be perturbed when the complex structure varies ( [4]). There are several
results on this problem recently. In [1] Apostolov-Calderbank-Gauduchon-T. Friedman
showed that the extremal metrics can be perturbed when the deformation of the com-
plex structure is invariant under the action of a maximal compact connected subgroup G
of the isometry group of the extremal metrics. Rollin-Simanca-Tipler extend this result
in [19] and they allow the group G extends partially to the complex deformation. Here
we combine Rollin-Simanca-Tipler and Pacard-Xu’s methods to get a similar result as in
the case of fixed complex structures.

Before stating the next result, we need to introduce some notations. Let (M, ], g,wg)
be a compact Kéhler manifold with a constant scalar curvature metric (g,w,) and G the
identity component of the isometry group of (M,g). We assume that a compact con-
nected subgroup G’ of G acts holomorphically on a complex deformation (J;,g:,w;) and
we denote by B¢ the space of all such complex deformations. Let Wé/k be the space of

G'-invariant functions in W>** and 7—[‘;0 be the space of the space of holomorphic poten-
tials of the elements in the center 3, of g;,, where g, is the ideal of the Killing vector fields
with zeroes in the Lie algebra of G’. With these notations, we have

Theorem 1.2. Let (M,], g,wg) be a compact Kihler manifold with a constant scalar curvature
metric wq and

kerlLg "W2F CR&HY. (1.1)
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For any (Ji,8t,w¢) € Bgy, there is a constant €y > 0 and a smooth function ¥ : Bg: — R such that
if

Y (Ji,8t,wi) =0 (1.2)
for some t € (0,€9), then M admits a G'-invariant constant scalar curvature metric in [w;] with
respect to J;. In particular, the conclusion holds if the condition (1.2) is replaced by the vanishing
of the Futaki invariant of [wy).

The condition (1.1) coincides with the non-degeneracy condition of the relative Futaki
invariant, which is introduced by Rollin-Simanca-Tipler in [19]. Here we get the same
condition from a different point of view. We can get a similar result as Corollary 1 and a
similar expansion of the function ¥ as in Theorem 1.1, which are omitted since we will
not use them in this paper.

Finally, we will study the deformation of the Kéahler-Ricci soliton. A Ké&hler-Ricci
soliton is a Kéhler metric wy in the first Chern class satisfying

Ric(wg) —wg=+'—1000,

where 6y is a holomorphic potential of a holomorphic vector field X. As Kédhler-Einstein
metrics, the existence and uniqueness of Kadhler-Ricci soliton are important and has been
studied by a series of papers [22,23] etc. Since Kdhler-Ricci solitons must be in the first
Chern class, there are no Kdhler-Ricci solitons if we deform the Kdhler class. However,
inspired by the extremal Kadhler metrics, we can consider whether there is a metric satis-
fying the equation
s(wg) —s=A~A70x,

where s is the average of the scalar curvature s. This metric is first introduced by Guan
in [9] and is called extremal solitons. Using the same idea as in [11,12], we have the result:

Theorem 1.3. Let (M, ],g,wy) be a compact Kihler manifold with a Kihler-Ricci soliton (g,wyg).

1. If the complex structure is fixed, for any p € H1 (M) there is an extremal soliton in the
Kiihler class [wg+-tB] for small t.

2. For any (J;,gt,wy) € Bg where G is the identity component of the isometry group of (M,g),
M admits a G-invariant extremal soliton in [w;] with respect to ;.

Under the assumption of the second part of Theorem 1.3, if in addition [wy] is the
first Chern class of (M, ];), then [w;] admits a Kdhler-Ricci soliton. It is interesting to see
whether Theorem 1.3 holds for any extremal soliton. There is a technical difficulty in the
proof and we cannot overcome it here.

2 Deformation of cscK metrics

In this section, we will use the method of Pacard-Xu in [18] to solve the constant scalar
curvature equation and show that a small perturbation of the Kdhler class under some
assumptions will admit a constant scalar curvature metric.
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2.1 Fixed complex structure

We follow Lebrun-Simanca’s notations in [11,12]. Let (M,], g,wg) be a compact Kahler
manifold of complex dimension n with a constant scalar curvature metric w,. By
Matsushima-Lichnerowicz theorem, the identity component G of the isometry group of
(M,g) is a maximal compact subgroup of the identity component Auto(M,]) of the au-
tomorphism group Aut(M,]). Let Wé’k (M) be the real k-th Sobolev space of G-invariant
real-valued functions in W?*(M). By the Sobolev embedding theorem, the space W>*(M)
is contained in C'(M) if k > n+I. The space of real-valued wg-harmonic (1,1) forms
on M is denoted by H!!(M). Since the metric g is G-invariant, every g-harmonic form
Be M (M) is G-invariant. Let P(M,wg) be the space of Kihler potentials of wy and U
be a small neighborhood of the origin in W%*(M). We can assume that & C P (M,w;) for
small t where w;=wg+tB. Thus, for any function ¢ €U the metric

Wt,(p:wg+t:3+ V —188(P,

is G-invariant.
Let H(M,]) be the space of holomorphic vector fields on (M,]). By Matsushima-
Lichnerowicz theorem, the Lie algebra h(M,]) can be decomposed as a direct sum

h(M,]) = hO(M/]) @G(M,]),

where a(M,]) consists of the autoparallel holomorphic vector fields of (M, ]) and ho(M,])
is the space of holomorphic vector fields with zeros. Let g the Lie algebra of G and gy the
ideal of Killing vector fields with zeros. Any element ¢ € gy corresponds to a holomorphic
vector field X = J¢++/—1¢, and we define a smooth function 0 satisfying

iXan =V —159)(, / Gxa)g =0.
M

The function 0y is called holomorphic potential of X with respect to w,. Since g is G-
invariant, 6 is a real-valued function. Let 3 C g denote the center of g and 30=3MNgo. Then
30 corresponds precisely to the Killing vector fields in gg whose holomorphic potentials
are G-invariant.

Now we choose a basis {&1,-+,8;} of 30 such that the functions {6,0y,---,0,}, where
6o=1and 6; is the holomorphic potential of the holomorphic vector fields X;=]&++/—1¢&;,
are orthonormal with respect to the L? inner product induced by the metric g

1 (o]
<fzg>L2(wg)=7g/Mfgw§, f,§€C*(M,R),

where V, = [, wg. Using this product, the space Wé’k has a decomposition

wZ* =HgDH,y,
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where H, is spanned by the set {6y,01,---,0,} over R. We define the associate projection
operator

w2k
Ig:Wg" —H,

d
f=Y 000 f) 20y Bir
i=0

and the operator ﬁ; =I1-TI,.

For any pclf, we calculate the expansion of the scalar curvature of w; ¢ at (t,¢)=(0,0):

(wr,p) =5(wg) = (A2p+Rijpji+tgtrgP+tR By ) +Qy(V2g,tB),

where Q. collects all the higher order terms. Note that tryf is a constant since p is har-
monic. The linearized operator of s(w;,) at (t,¢) = (0,0) is —ILg@, where the operator
L; ¢ is defined by

Ly =A59+Rijpj;

and for any f € kerlL, we can associate a holomorphic vector field Xy =]V f+ V=1V f
which has nonempty zeros. In general, IL; has nontrivial kernel and it is difficult to solve
the constant scalar curvature equation.

Now we have the following result:

Theorem 2.1. Let (M,wyg) be a compact Kithler manifold with a constant scalar curvature metric
wq. There exists €y > 0 and a smooth function

®:(0,e0) x HMH (M) =R

such that if B€ H1 (M) has unit norm and satisfies ®(t,)=0 for some t (0,e9) then M admits
a constant scalar curvature metric in the Kihler class [wq+1p].

Proof. Consider the equation for (¢,&) € "H;k x RAH1:

S(‘Ut,q)) = <E/®>/ (2.1)

where @ = (6y,01,---,04) and E= (co,c1,---,c4) € R4 is a vector with

Note that if Eq. (2.1) holds, then ¢¢ is the average of the scalar curvature and it only
depends on the Kahler class [w;]. Applying the implicit function theorem, we have
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Lemma 2.1. Fix B€ HYY(M). Then there exist €y,C >0 such that for all t € (0,q) there exists
a unique solution (¢y5,5 ) € H;kH x R*1 of Eq. (2.1) and satisfying the estimates

@16l waksaan < Ceo,  [|Z4 4]l < Ceo, (2.2)

where ||Z|| denotes the standard Euclidean norm of & in R+,

Proof. We consider the operator

Hés(wt,q,) (—€,€) X ’Hg s — R
Since the linearized operator at (t,¢) = (0,0)

DT s(wtp)l(0,0) : Hypra = Mgk
p——Leyp

is invertible, for small ¢ there is a solution ¢; g€ H;k 4 such that ﬁés(wt,q)tﬁ) =0and we
can find a vector &; g € R?™! such that

s(Whp,5) = (Bt p,O). (2.3)
The estimates in (2.2) follow directly from the implicit function theorem. O

Now we want to know when the solution (@18 Z1p) of (2.1) has constant scalar cur-
vature. It suffices to show that the vector & Ht,ﬁ (co,c1,++,c4) satisfies ;=0 for all 1 <i<d.
Given g€ H!! (M), the solution (¢, 3) determines a holomorphic vector field

Xip= ch )Xk €bo(M,]), (2.4)

where Xj is the holomorphic vector field defined by 6 and c;(t) are the entries of the
vector &y 5= (co(t),c1(t),+-,c4(t)). For simplicity, we write w; g = w,g,, for short. Now
we define a function on (0,e9) x H (M) by

O(tp) = /M Xi g ',

where hy, , is determined by s(w;g) —co(t) = Ay, 4hw, ;- Note that the function (t,8) is
exactly the Futaki invariant of (X; g,[w;]), and it is zero if the Futaki invariant of [w;] van-
ishes. Let I, be the L?-projection from Wé’k (M) to the subspace which is spanned by the
functions {6y,---,6;}. We denote by Erp= (c1,++,c4) the vector in R? which removes ¢
from Et,ﬁ and ®@=(6,,---,0,). With these notations, we have the lemma:
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Lemma 2.2. There is a €y >0 such that, if t € (0,&q) and if B€ H'' (M) with unit norm is a zero
of the function ®(t,B) then wy g has constant scalar curvature.

Proof. Note that

N /M 015 (wr ) — o)) cof's = /M 011, 0) ', 2.5)

where 6; g is the holomorphic potential of X; g with respect to the metric w; g under the
normalization condition

0; pwy s =0. 2.6
| Bupoty (2.6)
We claim that there is a constant C independent of t and f such that

18,5 = (Zt,8.O) [| 2(coy) < C0l|Ex 2.7)

In fact, by definition we have
ix,;wg=V—19(8;,0), ix,,wis=\—100;p.
This implies that

d
vV _13(91‘,‘3_ <Et"3,®>) :ixt/ﬁ(tﬁ'i‘ V —183%5) = Z Ck(t)ixk(tﬁ'i‘ V —183%[5),
k=1

where we used the definition (2.4) of X; g. Since by Lemma 2.1 || ¢4 gl y2x+4(p1) < Ceo for
any t€ (0,€9), we have

848 (20 | = | L (1)t (001, 1+ =1031) )|

S CeO H‘Et,‘BH/

which implies that
16,5 = (Zt,8/0) || 2(wy) < Ceol[En g
by the eigenvalue decomposition of A, and the normalization condition (2.6). Thus, the
inequality (2.7) is proved.
Since {6o,---,0,} is an orthonormal basis of H¢, we have

I2plP= [ (Ep@Pwp<C [ (2150200, @8

where we used the fact that [|@||yy2k+4(p) < Ceo when t small by Lemma 2.1. The assump-
tion ®(t, ) =0 together with (2.8) and (2.7) implies that

— 2 o - _ =
/M <d't,‘31®> Wzlg _/M <<ut,ﬁ/@> 9t,ﬁ) <Ht,lB/®>WZ‘3

<Ceo |l [1(Z1,8.O) [ 12(coy)

< C€0 /M <Et,'3,@>2a)2‘3.
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Thus, if €g is small enough we have E; s =0. The lemma is proved.
Thus, the first part of Theorem 1.1 and Corollary 1 follow directly from Lemma 2.2. [
Observe that we can expand the function ®(¢,8) with respect to t at t =0:
O(t,8) =a1(B)t+ax(B) 2 +az(B) P+ +a, (B)" +O(t" ),

where a;(B) are the coefficients of t/. We want to ask what kind of Kahler metric exists if
we only assume the first several terms of a;(p) vanish.

Corollary 2.1. Let wg be a constant scalar curvature metric. There are two constants €,C >0
such that for any harmonic form B € H'1 (M) with unit norm and

a1(B)=az(B)=---=an(p) =0, (2.9)
M admits a Kihler metric wy g € [wi+tB] for t € (0,€0) satisfying
Is(we,g) —co(t) | cea <CH'Z (2.10)

Proof. We follow the notations in Lemma 2.2. By the assumption (2.9), there are two
constants €9,C > 0 such that for any ¢ € (0,69) we have

|(t,B)| < CH™ L, (2.11)

By equality (2.5) and (2.7) we have
= 2. .n
@(18)~ [ (200) 7wl

< CeolEpll-I1215O) 12y <Cen [ (1,0)wls,

where we used (2.8) in the last inequality. Thus, there is a constant €y > 0 such that for
any t € (0,69) we have

/ (815,025 <C-B(,p) <C-"H1,
y !

and hence

d
Y ciltP= [ (Ep©2wi<C [ (8150w Crm, (212)
i=1 M M

This implies that for each i when t is small, |c;(t)] < Ct"Z". Since w, p is a solution of (2.1),
we have

Is(wip) =co(t)llcx(m —I\ch )illcr(m

The corollary is proved. O
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Now we want to compute the coefficients of t in the expansion of the function ®. Let
wyg be a constant scalar curvature metric on M and (¢;,5¢ ) the solution of (2.1). Since
the operator

L 1
Lo Hyria—Hex

is self-adjoint and invertible, we denote by G¢ = ngl the inverse operator of IL;. Without
loss of generality, we can assume that B is traceless with respect to the metric g. Other-
wise, we can consider the metric (14¢-try)wg which still has constant scalar curvature.

Let H(l)’l (M) be the space of traceless harmonic (1,1) form with respect to the metric g on
M. Computing the first derivative of S(t):=s(w; g) — (E; 3,0) with respect to t, we have

Lemma 2.3. For € 7—[(()1’1), we have the following:
(E'(0),0) =TI (R;iB;7),
¢'(0)= —Ggﬁé (RiBji).
PP |
co(0) = Vg /M Rijﬁﬁwgr
where we write f'(t) = % for simplicity.
Proof. Since S(t)=0 for t € (0,€p), we have
0=S5'(t)=—A7¢'(t) = Ryz(1) @;(t) — Rz (1) B — (E; 4 (1), ©). (2.13)
Projecting to the space H, when t =0, we have
0=TILy(S'(1)(0) = ~TTy(Rfy) — (21 5(0),0),
which implies that ) ) )
(£15(0),0) = —TIL(R;7B;7)-
On the other hand, we project (2.13) to the space H;k and we have
0=TT4(5'(£))(0) = —Lgg/(0) I (R;87).
This together with ¢'(0) € H;k .4 implies that
¢'(0)= —Ggﬁé (RijBj7)-

Now we calculate c)(t). Note that co(t) only depends on the Kéhler class [w,+tg], we

compute it using the metric w;=wq+tp. Since %w?

o =tre,fwy =0, we have V/=0and

1 0 1
/ . _ R _
Co<0)—7g o §S<Wt)‘t_owg—7g/M R;iBjwy-

The lemma is proved. O
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Corollary 2.2. If € H(l,’l (M), then the function ® can be expanded as

()=t [ (Ty(Ry;)* +O(). 149

Proof. Since 6; 5(0) =0 and & 4(0) =0, we have ®'(0) =0. Direct calculation shows

@"(0 / 26] 5(0) () 5(0),0) . (2.15)
Taking the derivative with respect to t, we have
d
V' —106; 4(0) = (iX;,ﬁwt,,g-i-iX,,ﬁw{,ﬁ) ‘H) :kE e (0)ix,we=v— Z ¢, (0)06y,
=0 k=1
which implies that
d
16(0) =) ct(0)6 = (E; 4(0),0). (2.16)
k_
This together with the equality (2.15) and Lemma 2.3 implies that
@"(0 z/ (E] 5(0),0))2w _2/ (e (RiB;))>-
The corollary is proved. O

If wq is a Kdhler-Einstein metric, the first term of the right hand side of (2.14) auto-
matically vanishes. In this case, it is not difficult to expand ®(t,) for more terms.

Lemma 2.4. If € Hy' (M) and satisfies R;iB =0, then we have
(E15(0),0) =TT (2R 7B #B),
¢"(0) =GglTy (2R ;B,:Bi),
/! _ 1
co(0)= Ve /M 2R;iBirPriwy
Proof. Following the proof of Lemma 2.3 we have
§"(t) = (Bij+ i) (De@) i+ D ((Bij+ ) 97) ~A7g”
+ (qu)/)ifqo;{ ( ) q)]l +2Rl] q)]k (:B+ Vz /)kl (Aq) )1]13]1

+RBr(B+V?Di) i+ RiBii(B+V2Digp) 1 — (2 5,0).
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Thus, projecting to H, and H;k we have
0=IT,(S"(#))(0) =TTy (2R;BxBx) — (E¢5(0),0),
0=TT (8"(+))(0) = —Lg¢" +TT5 (2R ;B;:Bs7)-

Moreover, we calculate ¢{/(0) as in the proof of Lemma 2.3

1
" o "
b= [, Rws+1)'|_wh =y [ 2Ribibic
The lemma is proved. O

Corollary 2.3. If wy is a Kihler-Einstein metric and p € 7—[(1)’1 (M), then we have

O(tB)=t* | (T(Ryyehis) oy +O(E).

Proof. By Lemma 2.3, we have
(E15(0),0)=9'(0)=cp(0) =0.
Thus, Eq. (2.16) implies that 6; 5(0) =0 and by direct calculation we have
@ (0)=3 / (545(0),0) +61,5(0) (E1/5(0),0) ) w} =0.

On the other hand, by Lemma 2.4 we have
. d . d
V=19075(0) =ixy, oy wg = Y f (0)ix, g = \/—19(2 c;’(o)ek), 2.17)
k=1 k=1

which implies that
£p(0)=(E5(0),0). (2.18)
Thus, by tedious calculation we have

6/ 0,5(0)(Z{(0),0) w —24/ (RigBieBii))? w

The corollary is proved. O
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2.2 Varying complex structures

In this section, we will consider the deformation of constant scalar curvature metrics
when the complex structure varies. Let (M, ],g,w,) be a compact Kéhler manifold (M,])
with a Kéhler metric ¢ and the associate Kahler form wg. Let J; be a smooth family of
complex structures with Jo=]. By Kodaira’s theorem in [16] there exists a smooth family
of Kdhler metric g; with go = g which is compatible with the complex structure J; for
small ¢. Let w; be the associate Kdhler form of g; with respect to the complex structure
Ji. The triple (J;,8t,w;) is called a complex deformation of (],g,w;). Given a complex
deformation (J;,gt,w;), we want to know whether there exists a constant scalar curvature
metric in the Kahler class ([w;],];) if we assume that wy is a constant scalar curvature
metric on (M, ]).

Since g is a constant scalar curvature metric, the identity component G of the isom-
etry group of (M,g) is a maximal compact subgroup of Aut(M,g) by Lichnerowicz-
Matsushima theorem. In general the action of the group G may not extend to (M, J;).
We follow the idea of Rollin-Simanca-Tipler in [19] to assume that a compact connected
subgroup G’ of G can extend to (M, J;) and G’ acts holomorphically on the complex defor-
mation (J;,g:,w;). We denote by Bg the space of complex deformations (J;,gt,w;) which
allow the holomorphic action of G'. We denote by W¥(M) the subspace of G'-invariant
functions in W*¥(M) and U a neighborhood of the origin in W**(M). For any ¢ € U,
we compute the expansion of the scalar curvature of the metric wy,, = w;+ \/—_18t6_)fg0 at

(t,9)=(0,0):
Lemma 2.5. Suppose that ow; /ot =1;. We have
s(wtp) =s(wg) _]Lg(l’_t<Agtrwg<77+S (9))+R;(n+5(9)) j;+trg(510gdetg)) +Q,

where Q collects all the higher order terms and the operator S is given by S =1dJ!(0)df.

Proof. For any smooth function f, we define the operator
d < 1
Si(f):= 5,V —19:9:(f) = 5dJdf,

where we used the equality v/—10;0; = 1dJ;d. Note that

0 _
57 WLe =Nt +5:(@), Dowe () =V —19:9ry.

The derivatives of the scalar curvature are given by

d -
575(@tLe) = = (15+5,(9) )Rji— 875y jj(logdetg) — Astra, , (17+S:(¢)),

Dos(wi,19) () = _Rifl/’j;—Aftp.
Thus, the lemma follows directly. O
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As in Section 2, we define g(resp. g’) the Lie algebra of G(resp. G’), and gy (resp. g;) the
ideal of Killing vector fields with zeros in g (resp. g). The center of go(resp. g;,) is denoted
by 3o0(resp. 3(). Each element of 3o(resp. 3() is of the form JV f for a G(resp. G’)-invariant,

real-valued function f. Let ?—[gé (resp. 7—[2,6) the space of holomorphic potentials of the
Killing vector fields in gj, (resp. 3;) and it is easy to see that the space 7—[2,6 is identified to

the G’-invariant holomorphic potentials of 7—[2,6. Using the L? inner product induced by
g, the space W2F(M) has the orthogonal decomposition

Wt (M) =He®HE,

where H, :R@H‘;é and we assume H, is spanned by an orthonormal basis {6,61,---,04}
where 6y =1 with respect to the induced L? norm of the metric g. Let I, and ﬂ; be the
L?-orthogonal projection onto Hg and H;k respectively. With these notations, we have
the result:

Theorem 2.2. Let g be a constant scalar curvature metric on M with
kerLy NWZf CROHY. (2.19)

For any (]Ji,8t,w;) € Bgy, there is a constant €y > 0 and a smooth function ¥ : B — R such that
if ¥(Ji,8t,wt) =0 for some t € (0,€9), then M admits a G'-invariant constant scalar curvature
metric in [w;] with respect to ;.

Proof. First, we want to find the solution (¢,Z) € H* Tkra X R+ of the equation
s(wiy) =(E,0), (2.20)

where © = (60,61,+-,64). As in the proof of Lemma 2.1, we can use the implicit function
theorem and Lemma 2.5 to show that

Lemma 2.6. Suppose that the condition (2.19) holds. For any (J1,8t,wi) EBg, there exist C,e0>0
such that for all t € (0,€0), there is a solution (¢, Z¢) € Hg s X R4 which satisfies Eq. (2.20)

and
| @tllwairaany < Ceo,  [|E¢]| < Ceo. (2.21)

Proof. The linearization of the operator ﬁ;s(wt,q,) :(—€,€) X H;:k+4 —Rat (t,¢)=(0,0) is
given by
gat _ gL 2k
DylTy s(wig)| (0,0) (p)=—Lgp: Hg,k+4 —Wgr,

which is invertible from Hkﬁr 4 to H;k if and only if the condition (2.19) holds. Thus, the
lemma follows directly from the implicit function theorem. O
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Let {;(1 <i<d) be the Killing vector fields in 3o with the holomorphic potentials
0;(1<i<d). Since (J;,gt,w:) € Bg, the vector fields Xf := J;&;++/—1¢; are holomorphic on
(M, ];) and the holomorphic potential of X! with respect to w; o, is given by a real-valued
function 6! satisfying

ixicr, = V10,6, /M ol =0. (222)

For the vector &; = (co(t),c1(t), -+ ,ca(t)) € R¥*1 obtained in Lemma 2.6, we define the
holomorphic vector field

X;= Zc ()X} €bo(M,J;).
Let 6; be the holomorphic potential of X; with respect to w; 4, and
®:<91/"'/9d)/ Et:(Cl(t),"‘,Cd(t)),

where c;(t) are the entries of &;.

Lemma 2.7. If (J;,81,w;) € B satisfies
H]t_]OHCl(M)SCGOI tE(O,GQ), (223)
then there is a constant C1 >0 such that for all t € (0,ep) we have

18— (E6,0) || 2(cop) < Cr€0]|Ze - (2.24)

Proof. Define the vector field X; =Y¢_, c;(t)X; € ho(M,]) where ¢ (t) is given by Lemma
2.6. By definition, we have

l')ﬂ(rwg =V _13<Ef,®>, X, Wt o=V — 8 Gt,

where 0 denotes the operator on (M,]). We want to compute the difference of the two
functions 6; and (Z;,0):

vV —13(<Et,®> —Gt) = i;{rwg—ixtwt,@-i- \ _1(3f_3)9t
d
= Eck(t)(ikag—ixiwt,@)-i-v —1(8f—8)9t. (225)
k=1
Note that the estimate ||wg —wt,g, ||w2r2(pr) < Céo obtained in Lemma 2.6 implies

19 (ix, 05 =ix 1)l

— Hia(xkfx,g)wg*‘iax,g(wg—wt,gof) +iX£8(wg—wt,q,,) || co < Ceqy, (2.26)
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where we used the estimates

19Xk = Xi) lco =19t = Jo) Gk llco < Ceo, € (0,0).

Now we estimate 6;. Note that we have
d
A“]Wt 9{ = —18t(ixtwt,¢t) = -1 Z Ck(t)at(ixtwt,%)
k=1

and ||wy, g, —wg || 2« <Ceg if we choose k sufficiently large in Lemma 2.6, there is a constant
C >0 independent of t such that

1641 2 (M,g) < ClIZe - (2.27)
Therefore, we have
= 1
‘a(at—a)et‘ - E‘a(]t—fo)det‘ <Ceo-||E:|, t€(0e0), (2.28)

where we used the equality d;f = 1(df —/—1J;df) and the inequality (2.27). Combining
the estimates (2.25), (2.26) and (2.28), we have

[8((21,0) 61| < Ceo- |21

This together the eigenvalue decomposition and the normalization condition (2.22) gives
(2.24). The lemma is proved. O

Now we define the function ¥: B — R by

‘I’(It,gt,wt) = /M Xtht,q;twf,(pt = /M 9t(S<wt,<p) —Co(f))w?,@,

where co(t) is the average of s(wi,g,) and hyg, is given by s(wig,) —co(t) = Duwy,, it g,- As
in Section 2, we have the following result whose proof is omitted.

Lemma 2.8. There exists €y > 0 such that if the complex deformation (J;,g:,w;) € Bg satisfies
Y (], 8t,wi) =0 for some t € (0,€9), then wy g, is a constant scalar curvature metric with respect
to the complex structure J;.

Theorem 2.2 then follows from the above results. O
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3 Deformation of Kiahler-Ricci solitons

Let (M,]) be a compact Kdhler manifold with a Kdhler Ricci soliton gxs with respect to
the holomorphic vector field X:

RiC(wKs) —WKS=V —1899)(,

where 6y is the holomorphic potential of X with respect to wks. We would like to ask
whether we can perturb the Kédhler Ricci soliton under complex deformation of the com-
plex structure. Inspired by the discussion before, for any Kahler class [wg|we consider
the metric w,, € [w,] satisfying the equation of extremal solitons

s(wy) —8=~2u0x(wy). (3.1)
By the d0-Lemma, we can easily check that

Lemma 3.1. If w, € 27tc1 (M) satisfies the equation (3.1) with respect to a holomorphic vector
field X, then wq is a Kihler-Ricci soliton with respect to X.

By the equation (3.1), if [w,] admits an extremal soliton w,, and the Futaki invariant
vanishes on [wg], then w, must be a constant scalar curvature metric. In fact,

FX wnl) = [ 0x(9)8,0x(9)wy=0

implies that 0x(¢) is a constant.

Theorem 3.1. If wy be a Kiihler Ricci soliton with respect to X on M, then for any pe€ H' (M)
there is an extremal soliton in the Kihler class [wo+tB] for small t.

Proof. We follow Lebrun-Simanca’s arguments in [11,12]. Let ¢ be a Kidhler-Ricci soliton.
By Theorem A in the appendix of [22] the identity component G of the isometry group
of (M,g) is a maximal compact subgroup of the automorphism group Aut(M). As in
previous sections, we let Wé’k be the real k-th Sobolev space of G-invariant real-valued
functions in WX, Let g the Lie algebra of G and 3 C g denote the center of g. We denote
by go the ideal of Killing vector fields with zeros and 30 =3MNgo. By Lemma A.2 in the
appendix of [22], each element of j¢ is of the form JV f, where f is a G-invariant real-
valued function satisfying the equation

,Cg<f) = ;]TdZ;®dZ]TIO.

We choose a basis {&1,---,&;} of 30 such that the functionals {6y,6,,---,0;}, where 6y =1
and 6;(1<i<d) is the holomorphic potential of the holomorphic vector fields X; = J;+
v/—1¢;, are orthonormal with respect to the L? inner product

1 (o]
<fzg>L2(wg)=7g/Mfge"Xw§, f,§€C*(M,R),
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where V, is the volume of (M, g). Using this product, the space Wé’k has a decomposition
Wé’k = Hg@HgL’k, where H, is spanned by the set {6o,01,---,0,} over R. We define the
associate project operator I, and Hg, and we can assume that X; = X which defines the
Kéhler-Ricci soliton wy.

Now we consider the equation for ¢ €U :

$(t,9) =TI TIS Gy (s(wrg) — (1)) =0,

where G, is the Green operator with respect to the metric w;,. If U is small enough,
S(t,¢) =01if and only if w; ¢ is an extremal soliton. We calculate the variation of 5(t,¢) at

(£,9)=(0,0):

DyS(t,9)l(0,0) (%)
Hl(quH )’ ( (w g)‘ﬁ)"‘nng(p(G(p(S(wt,go)—E))|(0,0)~ (3.2)

Since g is a Kéhler Ricci soliton, we have G¢(s(wq) —s) =0x. Note that

d

TLy0x = Y (0i.9,0%) 12(c,) Oipr
i=0

where 0; , is an orthonormal basis of H¢. Now we choose the functions

g
W 1<i<d,

6o=1, 6;,=
o T bl

where 0; , are defined by the equalities ix,w;,y = v/—198; , such that {6g,¢,--,04,, } forms
an orthonormal basis of H,, which is the space defined similar to H¢ using the metric
wy. Thus, we have

_Hgl <D¢Hq)) ’(O,O)Gg(s<wg) —s)= _Hgl <D¢H<p) ‘ (0,0)9X

0 1 ~ ~
X ,9x>L2(wg)HL a1 DPet1,0l(00) = —Hgl D01, (0,0)-

10x |2 §10x | 12

By the definition of 91,¢, we have
iXD(Pwt,(P’(O,O) =V _15Dq)él,q)/
which implies that X (9) =Dyb1,¢ | (0,0)($). Combining the above equalities, we have
~TT; (DylTy) | (0,0) Gy (8(wg) =) = —TTg X (). (33)

Now we calculate the second term of the right hand side of (3.2). Let Ay =G (s(w,¢) —5),
we have
ApAy=s(wiy)—s.
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Differentiating this equation with respect to ¢ at (¢,¢) =(0,0), we have

—Pifx,ji+Bs Dy Agl(00) = _A§1/’ — Rz

Combining this with (3.2) we have

Iy Dy(Gy(s(wrp) —8))l (0,0 = —Tg Gg (A§¢+Rij¢ﬁ— ‘Pz‘jex,ﬁ> : (3.4)

Combining the equalities (3.2)-(3.4), we have

DyS(t,9)] (0,0 () = —T1g (Gg(A§¢+Riijﬁ—lPiﬂ9X,ﬁ)+X(1/J))
=TI} (Agp+p+X(p)),

here we used the assumption that g is a Kdhler-Ricci soliton. Note that by Lemma 2.2
in [22] the function ¢ satisfies Agp+¢+X () =0 if and only if [Ty =0 Thus, the operator

DyS(t, @)l (0,0 3H;k+2 - H;k

is invertible and by the implicit function theorem there is a solution ¢; € ”H;k o satisfies
the equation S (t,¢¢:) =0 when t is small. The theorem is proved. O

Remark 3.1. It is interesting to ask whether Theorem 3.1 holds for any extremal soliton
g. To prove this, it suffices to show that any function i with

P+ 0x e =0
must satisfy the equation ¢;;=0.

In fact, if g is an extremal soliton, we have

G (AZP+Rtpii— i j7) + X () = Gg (AG+Rystpr—O74p:-+ Mg (X))
= Gg(AZY+Ritpir+8 i+ 0x i) = Go (i +0x k),

where we used the equality

1
Bg(Xy)= 5 ((9;lPi)jj+ (921/11')]7> =077+ 0:(Ap);
= 057+ 0i (i — Ristpj) =057+ 0P +8 i

Here we used the extremal soliton equation in the last equality.

Next, we use the similar method in Section 2 to consider the case when the complex
structure varies . Let (g,w) is a Kdhler-Ricci soliton on (M, ]) and (J;,8t,w;) a complex
deformation of (], g,wg). We assume (J;,gt,w;) € B where G is the identity component
of the isometry group of (M,g) and B¢ denotes all the G invariant complex deformation
of (],g, wg). With these notations, we have the result:
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Theorem 3.2. Let (M,],g,wyg) be a compact Kihler manifold with a Kihler-Ricci soliton (g,wy).
For any (J;,gt,wt) € Bg, M admits a G-invariant extremal soliton in [w;| with respect to J; for
small t.

Proof. The proof is more or less the same as in Theorem 3.1, and we only sketch it here.
For any (J;,8t,w:) € Bg, we consider the equation

S(t,@) =TI T1,; Gy (s(wre) —s(t)) =0, (3.5)

where G, and Hq% are the operators with respect to the metric w;, = wl‘+\/__18fétq0.
Let {¢1,-,{4} be a basis of 39. Since (J;,gt,w;) € Bg, the vector fields {X{,---,X};} where
Xi=J&i+ v/—1¢; are holomorphic vector fields on (M, J;) and form a basis of ho(M, J;). Let
0!(1<i<d) be the holomorphic potentials of X! with respect to w;,, and we assume that
the set {6},6!,---,0"} where 6=1 are orthonormal and spans the space H,,. Differentiating
the equation (3.5) with respect to ¢, we have

DyS(t,9)l(0,0) (%)
= —IIg (DyITy)|(00)Gg(s(wg) =) + 11y Dy (G (s(wr,e) —8))l(00)-

Since Dywig(0,0) () = v =199y and Dy X!| (g0 =0, we still get the equality (3.3). By the
same calculation as in Theorem 3.1, we have the operator

DyS(4,9)l00)(¥) =TT (Agp+p+X(p))
which is invertible from H;k L to H;k. The theorem is proved. O

Here we give an easy example on the existence of extremal solitons.

Example 3.1. Let 71: M — M be the blowup of M = CIP? at a point p. Then M has no
Kahler-Einstein metrics but admits a Kihler-Ricci soliton in 27tcy (1\71) Thus, M admits
extremal solitons in the Kéhler class 27tc (M) —t[E] for t € (0,€) where E = ~1(p) is the
exceptional divisor and € >0 is small.
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