Regularity of Viscous Solutions for a Degenerate Non-linear Cauchy Problem

HERNÁNDEZ-SASTOQUE Eric¹, KLINGENBERG Christian², RENDÓN Leonardo ${ }^{3}$ and JUAJIBIOY Juan C. ${ }^{4, *}$
${ }^{1}$ Departamento de Matemáticas, Universidad de Magdalena, Santa Marta, Colombia.
${ }^{2}$ Department of Mathematics, Würzburg University, Germany.
${ }^{3}$ Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá.
${ }^{4}$ Departamento de Ciencias Naturales Y Exáctas, Fundación Universidad Autonoma de Colombia, Bogotá.

Received 4 August 2015; Accepted 9 March 2016

Abstract

We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution is a Lipschitz function on the spatial variable and Hölder continuous with exponent $1 / 2$ on the temporal variable.

AMS Subject Classifications: 35K65, 35D10
Chinese Library Classifications: O175.26
Key Words: Viscosity solution; Hölder estimates; Hölder continuity.

1 Introduction

In this paper we consider the Cauchy problem for nonlinear degenerate parabolic equation

$$
\begin{align*}
& u_{t}=u \Delta u-\gamma|\nabla u|^{2}+f(t, u), \quad(x, t) \in \mathbb{R}^{N} \times \mathbb{R}_{+}, \tag{1.1}\\
& u(x, 0)=u_{0}(x) \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right), \tag{1.2}
\end{align*}
$$

where γ is a nonnegative constant. Eq. (1.1) arises in severals applications of biology and physics, see [1,2]. Eq. (1.1) is of degenerate parabolic type: parabolicity it is loss at

[^0]points where $u=0$, see $[1,3]$ for a most detailed description. In [4] a weak solution for the homogeneous equation (1.1) is constructed by using the vanishing viscosity method [5], the regularity of the weak solutions for the homogeneous Cauchy problem (1.1)-(1.2) was studied by the author in [6] and an extension for the inhomogeneous case is given in [7]. In this paper we extend the above results for the inhomogeneous case, this extension is interesting from physical viewpoint, since the Eq. (1.1) is related with non-equilibrium process in porous media due to external forces. We obtain the following main theorem,
Theorem 1.1. If $\gamma \geq \sqrt{2 N}-1,\left|\nabla\left(u_{0}^{1+\frac{\alpha}{2}}\right)\right| \leq M$, where M is a positive constant such as
$$
\alpha^{2}+(\gamma+1) \alpha+\frac{N}{2} \leq 0,
$$
then the viscosity solutions of the Cauchy problem (1.1)-(1.2) satisfies
\[

$$
\begin{equation*}
\left|\nabla\left(u^{1+\frac{\alpha}{2}}\right)\right| \leq M . \tag{1.3}
\end{equation*}
$$

\]

We principally followed the ideas of the authors in [6,7], where the particular reaction therm $K u^{m}$ was considered.

2 Preliminaries

We begin this section with the definition of solutions in weak sense.
Definition 2.1. A function $u \in L^{\infty}(\Omega) \cap L_{l o c}^{2}\left([0,+\infty) ; H_{L o c}^{1}\left(\mathbb{R}^{N}\right)\right)$, is called a weak solution of (1.1)-(1.2) if it satisfies the following conditions:
(i) $u(x, t) \geq 0$, a.e in Ω.
(ii) $u(x, t)$ satisfies the following relation

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u_{0} \psi(x, 0) \mathrm{d} x+\iint_{\Omega}\left(u \psi_{t}-u \nabla u \cdot \nabla \psi-(1+\gamma)|\nabla u|^{2} \psi-f(t, u) \psi\right) \mathrm{d} x \mathrm{~d} t=0, \tag{2.1}
\end{equation*}
$$

for any $\psi \in C^{1,1}(\bar{\Omega})$ with compact support in $\bar{\Omega}$.
For the construction of a weak solution to the Cauchy problem (1.1)-(1.2), we use the viscosity method: we add the term $\epsilon \Delta u$ in the Eq. (1.1) and we consider the following Cauchy problem

$$
\begin{align*}
& u_{t}=u \Delta u-\gamma|\nabla u|^{2}+f(t, u)+\epsilon \Delta u, \quad u \in \Omega, \tag{2.2}\\
& u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{N}, \tag{2.3}
\end{align*}
$$

where $\gamma \geq 0$. The existence of solutions for (2.2)-(2.3) follows by the Maximum principle and vanishing viscosity method ensures the convergence of the weak solutions when $\epsilon \rightarrow 0$ to the Cauchy problem (1.1)-(1.2).
Definition 2.2. The weak solution for the Cauchy problem (1.1)-(1.2) constructed by the vanishing viscosity method is called viscosity solution.

3 Estimates of Hölder

In this section we are going to proof the main theorem of this paper. We begin with some a priori estimates for the function u.

Proof. Let

$$
\begin{equation*}
w=\frac{1}{2} \sum_{i=1}^{N} u_{x_{i}}^{2} . \tag{3.1}
\end{equation*}
$$

Deriving with respect t in (3.1) and replacing in (1.1) we have

$$
w_{t}=\sum_{i=1}^{N} u_{x_{i}}\left[u_{x_{i}} \Delta u+u\left(\sum_{j=1}^{N} u_{x_{i} x_{j} x_{j}}\right)-2 \gamma w_{x_{i}}+f_{u} u_{x_{i}}\right] .
$$

By other hand

$$
\begin{align*}
& \Delta w=\frac{1}{2} \sum_{j=1}^{N}\left(\sum_{i=1}^{N} u_{x_{i}}^{2}\right)_{x_{j} x_{j}}=\frac{1}{2}\left[\sum_{j=1}^{N}\left(2 u_{x_{1}} u_{x_{1} x_{j}}\right)_{x_{j}}+\sum_{j=1}^{N}\left(2 u_{x_{2}} u_{x_{2} x_{j}}\right)_{x_{j}}+\cdots+\sum_{j=1}^{N}\left(2 u_{x_{N}} u_{x_{N} x_{j}}\right)_{x_{j}}\right] \\
& \Delta w=\sum_{i, j=1}^{N} u_{x_{i} x_{j}}^{2}+\sum_{i, j=1}^{N} u_{x_{i}} u_{x_{i} x_{j} x_{j}} \tag{3.2}
\end{align*}
$$

thereby,

$$
\begin{equation*}
w_{t}=2 w \Delta u+u \Delta w-u \sum_{i, j=1}^{N} u_{x_{i} x_{j}}^{2}-2 \gamma \sum_{i=1}^{N} u_{x_{i}} w_{x_{i}}+2 f_{u} w \tag{3.3}
\end{equation*}
$$

Set,

$$
\begin{equation*}
z=g(u) w \tag{3.4}
\end{equation*}
$$

After take twice derivatives with respect x_{i} in (3.4) we have

$$
\begin{align*}
& w_{x_{i}}=\left(g^{-1}\right)_{x_{i}} z+g^{-1} z_{x_{i}} \tag{3.5}\\
& w_{x_{i} x_{i}}=\left(g^{-1}\right)_{x_{i} x_{i}} z+2\left(g^{-1}\right)_{x_{i}} z_{x_{i}}+g^{-1} z_{x_{i} x_{i}} \tag{3.6}
\end{align*}
$$

From Eqs. (3.2), (3.5)-(3.6), we have that,

$$
\Delta w=\sum_{i=1}^{N} w_{x_{i} x_{i}}=\sum_{i=1}^{N}\left[\left(g^{-1}\right)_{x_{i} x_{i}} z+2\left(g^{-1}\right)_{x_{i}} z_{x_{i}}+g^{-1} z_{x_{i} x_{i}}\right],
$$

Deriving two times with respect x_{i} in (3.4) we have

$$
\begin{equation*}
\left(g(u)^{-1}\right)_{x_{i}}=-g^{-2} g^{\prime} u_{x_{i}} \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(g(u)^{-1}\right)_{x_{i} x_{i}}=\left(\frac{2 g^{2 \prime}-g g^{\prime \prime}}{g_{4}}\right) g u_{x_{i}}^{2}-\frac{g^{\prime}}{g^{2}} u_{x_{i} x_{i}} \tag{3.8}
\end{equation*}
$$

then,

$$
\begin{align*}
\Delta w & =\left(\frac{2 g^{2 \prime}-g g^{\prime \prime}}{g^{4}}\right) g \sum_{i=1}^{N} u_{x_{i}}^{2} z-\frac{g^{\prime}}{g^{2}} \sum_{i=1}^{N} u_{x_{i} x_{i}} z-2 g^{-2} g^{\prime} \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+g^{-1} \sum_{i=1}^{N} z_{x_{i} x_{i}} \\
& =g^{-1} \sum_{i=1}^{N} z_{x_{i} x_{i}}-2 g^{-2} g^{\prime} \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+2\left(\frac{2 g^{\prime}-g g^{\prime \prime}}{g^{4}}\right) g w z-\frac{g^{\prime}}{g^{2}} z \sum_{i=1}^{N} u_{x_{i} x_{i}} \\
\Delta w & =g^{-1} \Delta z-2 g^{-2} g^{\prime} \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+2\left(\frac{2 g^{2 \prime}-g g^{\prime \prime}}{g^{4}}\right) z^{2}-\frac{g^{\prime}}{g^{2}} z \Delta u . \tag{3.9}
\end{align*}
$$

From (3.3)-(3.5), (3.9), we obtain

$$
\begin{align*}
z_{t}=u \Delta z & -\left(2 g^{-1} u g^{\prime}+2 \gamma\right) \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+\left(2 f_{u}+g^{\prime} g^{-1} f(t, u)\right) z \\
& +\left(\frac{4 u g^{2 \prime}}{g^{3}}-\frac{2 u g^{\prime \prime}}{g^{2}}+\frac{2 \gamma g^{\prime}}{g^{2}}\right) z^{2}+2 z \Delta u-u g(u) \sum_{i, j=1}^{N} u_{x_{i} x_{j}}^{2} . \tag{3.10}
\end{align*}
$$

By choosing $g(u)=u^{\alpha}$, and since

$$
\begin{equation*}
\sum_{i, j=1}^{N} u_{x_{i} x_{j}}^{2} \geq \frac{1}{N}(\Delta u)^{2}, \tag{3.11}
\end{equation*}
$$

replacing g in (3.10)-(3.11) we have

$$
\begin{align*}
& z_{t} \leq u \Delta z-2(\alpha+\gamma) \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+\left(2 f_{u}+\alpha u^{-1} f(t, u)\right) z \\
& \quad+2 \alpha(\alpha+1+\gamma) u^{-\alpha-1} z^{2}+2 z \Delta u-\frac{u^{\alpha+1}}{N}(\Delta u)^{2} . \tag{3.12}
\end{align*}
$$

For $\gamma \geq \sqrt{2 N}-1$, if α satisfies

$$
\begin{equation*}
\alpha^{2}+(\gamma+1) \alpha+\frac{N}{2} \leq 0, \tag{3.13}
\end{equation*}
$$

where $\alpha^{2}+(\gamma+1) \alpha \leq-N / 2$, then,

$$
\begin{equation*}
2 \alpha(\alpha+\gamma+1) u^{-\alpha-1} z^{2}+2 z \Delta u-\frac{u^{\alpha+1}}{N}(\Delta u)^{2} \leq 0 . \tag{3.14}
\end{equation*}
$$

Therefore from (3.12) and (3.14) we have

$$
\begin{equation*}
z_{t} \leq u \Delta z-2(\alpha+\gamma) \sum_{i=1}^{N} u_{x_{i}} z_{x_{i}}+\left(2 f_{u}+\alpha u^{-1} f(t, u)\right) z \tag{3.15}
\end{equation*}
$$

By an application of the maximum principle in (3.15) we have

$$
|z|_{\infty} \leq\left|z_{0}\right|_{\infty} .
$$

Now, from (3.1), (3.4), with $g(u)=u^{\alpha}$, since the initial data (1.2) satisifes

$$
\left|\nabla\left(u_{0}^{1+\frac{\alpha}{2}}\right)\right| \leq M,
$$

with M a positive constant and α satisfies (3.13), we have

$$
\begin{aligned}
\left|\nabla\left(u^{1+\frac{\alpha}{2}}\right)\right|^{2} & =\left|\sum_{i=1}^{N}\left(u^{1+\frac{\alpha}{2}}\right)_{x_{i}} e_{i}\right|^{2}=\sum_{i=1}^{N}\left[\left(u^{1+\frac{\alpha}{2}}\right)_{x_{i}}\right]^{2}=\sum_{i=1}^{N}\left[\left(1+\frac{\alpha}{2}\right) u^{\frac{\alpha}{2}} u_{x_{i}}\right]^{2} \\
& =\left(1+\frac{\alpha}{2}\right)^{2} u^{\alpha} \sum_{i=1}^{N} u_{x_{i}}^{2}=2\left(1+\frac{\alpha}{2}\right)^{2} u^{\alpha} w=2\left(1+\frac{\alpha}{2}\right)^{2} z
\end{aligned}
$$

therefore

$$
\left|\nabla\left(u^{1+\frac{\alpha}{2}}\right)\right| \leq M .
$$

4 Hölder continuity of $u(x, t)$

Now using the main theorem, we have the following corollary about the regularity of the viscosity solution $u(x, t)$ to the Cauchy problem (1.1)-(1.2).
Corollary 4.1. Let f be a continuous function such that

$$
\begin{equation*}
|f(t, w)| \leq k|w|^{m} \tag{4.1}
\end{equation*}
$$

where w is a real value function and m, k non-negative constants. Under conditions of the Theorem 3.1 the viscosity solution $u(x, t)$ of the Cauchy problem (1.1)-(1.2) is Lipschitz continuous with respect to x and locally Hölder continuous with exponent $1 / 2$ with respect to t in $\bar{\Omega}$.
Proof. From there exists $\alpha \in \mathbb{R}$ with $\alpha^{2}+(\gamma+1) \alpha+\frac{N}{2} \leq 0$, with $\alpha<0$, or,

$$
-\frac{\sqrt{(\gamma+1)^{2}-2 N}}{2}-\frac{\gamma+1}{2} \leq \alpha \leq-\frac{\gamma+1}{2}+\frac{\sqrt{(\gamma+1)^{2}-2 N}}{2}<0 .
$$

Since $\alpha<0$, taking $\alpha \neq-2$, we have the estimate,

$$
\left|\nabla\left(u^{1+\frac{\alpha}{2}}\right)\right|=\left|\left(1+\frac{\alpha}{2}\right) u^{\frac{\alpha}{2}} \nabla u\right|=\left|1+\frac{\alpha}{2}\right| u^{\frac{\alpha}{2}}|\nabla u| \leq M .
$$

Now, as $u \geq 0$, we have that

$$
\begin{equation*}
|\nabla u| \leq\left|1+\frac{\alpha}{2}\right|^{-1} u^{-\frac{\alpha}{2}} M \leq M_{1}, \quad \text { in } \bar{\Omega} \tag{4.2}
\end{equation*}
$$

since u is bounded.
Using the value mean theorem, we have

$$
\begin{equation*}
u\left(x_{1}, t\right)-u\left(x_{2}, t\right)=\nabla u\left(x_{1}+\theta\left(x_{2}-x_{1}\right), t\right) \cdot\left(x_{1}-x_{2}\right) \tag{4.3}
\end{equation*}
$$

for any $\theta \in(0,1)$. From (4.2)-(4.3) we have,

$$
\left|u\left(x_{1}, t\right)-u\left(x_{2}, t\right)\right| \leq\left|\nabla u\left(x_{1}+\theta\left(x_{2}-x_{1}\right), t\right)\right|\left|x_{1}-x_{2}\right| \leq M_{1}\left|x_{1}-x_{2}\right|, \quad \forall\left(x_{1}, t\right),\left(x_{2}, t\right) \in \Omega
$$

Therefore $u(x, t)$ is a Lipschitz continuous with respect to the spatial variable. For Hölder continuity of $u(x, t)$ with respect to the temporary variable, we are going to use the ideas developed in [8]. Let $u_{\epsilon}(x, t) \in C^{2.1}(\Omega) \cap C(\bar{\Omega}) \cap L^{\infty}(\Omega)$ the classical solution to the Cauchy problem problem (1.1)-(1.2), namely,

$$
\left\{\begin{array}{l}
u_{t}=u \Delta u-\gamma|\nabla u|^{2}+f(t, u), \\
u(x, 0)=u_{0}(x)+\epsilon, \quad \text { in } \mathbb{R}^{N} .
\end{array}\right.
$$

We have that

$$
\left|\nabla\left(u_{0}+\epsilon\right)^{1+\frac{\alpha}{2}}\right|=\left|\left(1+\frac{\alpha}{2}\right)\left(u_{0}+\epsilon\right)^{\frac{\alpha}{2}} \nabla u_{0}\right| \leq\left|1+\frac{\alpha}{2}\right|\left(u_{0}\right)^{\frac{\alpha}{2}}\left|\nabla u_{0}\right|=\left|\nabla\left(u_{0}^{1+\frac{\alpha}{2}}\right)\right| \leq M
$$

Then, the conditions of Theorem 3.1 holds. Thereby

$$
\left|\nabla\left(u_{0}+\epsilon\right)^{1+\frac{\alpha}{2}}\right| \leq M
$$

Since u_{ϵ} is a classical solution, u is also a weak solution of the Cauchy problem (2.2)(2.3). Hence, using the same arguments in the proof of Theorem 3.1, we have that u_{ϵ} is a Lipschitz continuous with respect to the spatial variable, with constant M, namely

$$
\begin{equation*}
\left|u_{\epsilon}\left(x_{1}, t\right)-u_{\epsilon}\left(x_{2}, t\right)\right| \leq M\left|x_{1}-x_{2}\right|, \quad \forall\left(x_{1}, t\right),\left(x_{2}, t\right) \in \Omega \tag{4.4}
\end{equation*}
$$

The following argument is due to [7], let

$$
L(z)=u_{\epsilon} z-\gamma\left|u_{\epsilon}\right|^{2}+f(t, z)-z_{t}
$$

be the parabolic differential operator. Then $z=u_{\epsilon}$ satisfies $L(z)=0$, therefore

$$
\begin{equation*}
u_{\epsilon} \Delta z-z_{t}=\gamma\left|\nabla u_{\epsilon}\right|^{2}-f\left(t, u_{\epsilon}\right), \quad \text { in } B_{2 R}(0) \times(0, T] \tag{4.5}
\end{equation*}
$$

where $B_{2 R}(0)$ is the open ball centered in 0 , with radius $2 R$ in \mathbb{R}^{N}. Noticing that

$$
u_{\epsilon} \in C^{2,1}\left(B_{2 R}(0) \times(0, T]\right) .
$$

Therefore u_{ϵ} and ∇u_{ϵ} are bounded in $\overline{B_{2 R}(0)} \times(0, T]$, so exists a constant $\mu>0$ such that

$$
\sum_{i=1}^{N} u_{\epsilon}(x, t)=N u_{\epsilon}(x, t) \leq \mu, \quad \gamma\left|\nabla u_{\epsilon}(x, t)\right| \leq \mu, \quad \forall(x, t) \in B_{2 R}(0) \times(0, T]
$$

and by the condition (4.1) we have

$$
\left|f\left(t, u_{\epsilon}\right)\right| \leq k\left|u_{\epsilon}\right|^{m} \leq k\left(\frac{\mu}{N}\right)^{m} .
$$

From (4.4), we have also

$$
\left.\left|z\left(x_{1}, t\right)-z\left(x_{2}, t\right)\right| \leq M\left|x_{1}-x_{2}\right|, \quad \forall(x, t) \in B_{2 R}(0)\right) \times(0, T] .
$$

From the main theorem in [8] (page 104), there exists a positive constant δ (which depends only of μ and R) and a positive constant K, which depends only of μ, R and M, such that

$$
\left|z(x, t)-z\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{\frac{1}{2}},
$$

for all $(x, t),\left(x, t_{0}\right) \in B_{R}(0) \times(0, T]$ with $\left|t-t_{0}\right|<\delta$. That is,

$$
\left|u_{\epsilon}(x, t)-u_{\epsilon}\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{\frac{1}{2}},
$$

for all $(x, t),\left(x, t_{0}\right) \in B_{R}(0) \times(0, T]$ with $\left|t-t_{0}\right|<\delta$. Whenever K is independent of ϵ, taken $\epsilon \searrow 0$, we obtain

$$
\left|u(x, t)-u\left(x, t_{0}\right)\right| \leq K\left|t-t_{0}\right|^{\frac{1}{2}},
$$

for all $(x, t),\left(x, t_{0}\right) \in B_{R}(0) \times(0, T]$ with $\left|t-t_{0}\right|<\delta$.

Acknowledgement

We would like thanks the reviewer for the many valuable suggestion.

References

[1] Vazquéz J. L., The Porous Medium Equation: Mathematical Theory, Oxford Science Publications, 2007.
[2] Mikelic A., Espedal M. S. and Fasano A., Filtration in Porous Media and Industrial Applications, Springer-Verlag, New York, Heidelberg, Berlin, 2000.
[3] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1993.
[4] Ughi M., Bertsch M. and Dal Passo R., Discontinuous viscosity solutions of a degenerate parabolic equation. Trans Amer. Math. Soc., 320 (2) (1990), 779-798.
[5] Lions P. L., Crandall M. G., Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathematical Society, 1983.
[6] Lu Y. G., Qian L., Regularity of viscosity solutions of a degenerate parabolic equation. Proc. Amer. Math. Soc., 130 (4) (2001), 999-1004.
[7] Romero P., Rendón L., Regularidad de soluciones viscosas de una ecuación parabolica degenerada. Rev. Col. Mat, 45 (2011), 19-30.
[8] Gilding B. H., Hölder continuity of solutions of parabolic equations. J. Landon Math. Soc., 13 (1976), 103-106.
[9] Lu Y. G., Hölder estimates of solutions to some doubly nonlinear degenerate parabolic equations. Comm. Partial Differential, Equations, 24 (5-6) (1999), 895-913.
[10] John F., Partial Differential Equations. Springer-Verlag, New York, Heidelberg, 1982.

[^0]: *Corresponding author. Email addresses: eric.hernandez@unimagdalena.edu.co (E. H. Sastoque), klingen-berg@mathematik.uni-wuerzburg.de (C. Klingenberg), lrendona@unal.eu.co (L. Rendón), jcjuajibioyo@unal.edu.co (J. C. Juajibioy)

