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Abstract. Most existing applications of centroidal Voronoi tessellations (CVTs) lack con-
sideration of the length of the cluster boundaries. In this paper we propose a new model
and algorithms to produce segmentations which would minimize the total energy — a
sum of the classic CVT energy and the weighted length of cluster boundaries. To distin-
guish it with the classic CVTs, we call it an Edge-Weighted CVT (EWCVT). The concept
of EWCVT is expected to build a mathematical base for all CVT related data classifica-
tions with requirement of smoothness of the cluster boundaries. The EWCVT method is
easy in implementation, fast in computation, and natural for any number of clusters.
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1. Introduction

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations whose gen-

erators are also the centroids of the associated Voronoi regions, with respect to a given
density function. In the past few years, CVT-based methodologies have been applied suc-
cessfully to diverse disciplines, including but not limited to, image processing and analy-
sis [8,14,32], vector quantization and data analysis [17,18], model reduction [12], high-
quality point sampling [23], meshless computing [13], mesh generation and optimiza-
tion [1, 16, 20], numerical partial differential equations [11, 21], and computer graphics
and vision [18,27]. The application list is still growing.

Lots of applications of clustering require the cluster boundaries to be smooth, while
keeping the total length of the boundaries to be as small as possible. For example, we
often obtain zigzag cluster boundaries when the basic CVT technique is applied to classify
data sets. Especially in image segmentation, those zigzag boundaries are mainly due to
noises or natural properties of the images, smoothing the boundaries can help us reduce
or even eliminate the noises or unnecessary details [32].
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The popular level set method provides us a classic method to partially solve this prob-
lem [2–7, 9, 25, 28, 31]. However, it becomes very complicated when dealing with more
than two clusters since multi-phase level sets have to be considered [31] in this case. In
contrast, the CVT based techniques do not cause significant increase of computational cost
due to increment of the number of clusters. In fact, we successfully developed an improved
CVTs model for image segmentation recently and obtained very satisfactory results [32].
Our new model produces smooth boundaries in a controllable manner. More important,
our model can be easily generalized to handle the cases of more than two clusters without
introducing much difficulty in both theoretical and computational considerations. The key
idea of our new model is to introduce a new energy term related to the cluster boundaries.
And thus we call our model an Edge Weighted Centroidal Voronoi Tessellations (EWCVT)
model. In this paper, we apply the similar idea to general data spaces, not restricted to
image and even not restricted to 2D data set. The main contribution of our work here is to
build a mathematical base for all CVT related data classification/clustering with require-
ment of smoothness of the cluster boundaries.

Here we would like to emphasize the differences between the method proposed in this
paper and the one discussed in our another paper [32]. These two methods have the same
name — EWCVT, because they both from the same idea: adding the weighted edge length
to the classic CVT energy. In [32] the edge length considered is from physical space while
the CVT energy is specifically from the color space (the image intensity), however, this
paper handles the edge length and the CVT energy in the same physical space. Another
major difference is that the method in [32] is designed only for 2D images, while the
method in this paper can handle any dimensional data clustering problems. One may
think about these two papers in this way: suppose we have a box filled by several soap
bubbles, paper [32] takes a photo and tries to divide them by the color difference, this
paper tries to simulate them by calculating their occupancy and surface tension.

We organize our paper as follows. First, we give a brief review of the classic CVT models
and related algorithms in Section 2. In Section 3, the new EWCVT model and correspond-
ing implementation algorithms are carefully developed. Together with some analysis and
discussions, extensive numerical examples are presented to demonstrate special features
of the EWCVT model in Section 4. Concluding remarks are finally given in Section 5.

2. Review of Classic Centroidal Voronoi Tessellations

2.1. Basic definition

Generally speaking, the computational domain is an open subset of Rn, say Ω. A tessel-
lation of Ω is in fact a non-overlapping covering V = {Vl}

L
l=1 of Ω. Rigorously, we require

Vi ∩ Vj = ; if i 6= j and Ω = ∪L
l=1V l . The Voronoi region Vk of Ω can be easily computed

once we are given a set of points Z = {zl}
L
l=1 according to

Vk =
n

x ∈ Ω : |x − zk| ≤ |x − zl |, for l = 1, · · · , L
o

, k = 1, · · · , L. (2.1)
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where | · | is some predefined metric measure, e.g., the Euclidean distance on Rn. The set of
computed regions V = {Vl}

L
l=1 is called a Voronoi tessellation or Voronoi clustering [24] of

Ω. The set of chosen points Z = {zl}
L
l=1 is referred as the Voronoi generators. The Voronoi

tessellation V can be viewed as a special partition of Ω.
On the other hand, if we are given an arbitrary partition {Ul}

L
l=1 of Ω ∈ Rn, and a

density function ρ(x) defined for each x ∈ Ω, the so-called centroid (center of mass or
cluster means) of every cell Ul is the point z̄l ∈ Ul defined by

min
z∈Ul

∫

Ul

ρ(x)|x − z|2d x . (2.2)

By simple calculation, the explicit form of z̄l is given by:

z̄l =

∫

Ul

xρ(x)d x

∫

Ul

ρ(x)d x

. (2.3)

For an arbitrary Voronoi tessellation
�
{zl}

L
l=1; {Vl}

L
l=1

�
of Ω, normally we have zl 6= z̄l

for l = 1, · · · , L. In other words, we generally can not expect the generators which generate
the Voronoi tessellation to be happen to be the centroids of the corresponding clusters.

Definition 1. If the generators of the Voronoi regions {Vl}
L
l=1 of Ω coincide with their corre-

sponding centroids, i.e.,

zl = z̄l , for l = 1, · · · , L,

then we call the Voronoi tessellation {Vl}
L
l=1 a centroidal Voronoi tessellation (CVT) [10] of

Ω and refer {zl}
L
l=1 as the corresponding CVT generators.

We note that for a given domain Ω, the CVT may not be unique [10]. Therefore,
determining a CVT of Ω is actually a process to find a set of generators {zl}

L
l=1 such that

{zl}
L
l=1 are simultaneously the centroids of the associated Voronoi regions {Vl}

L
l=1.

2.2. Clustering energies and Lloyd’s algorithm

The construction of CVTs can be viewed as an energy minimization process [10]. For
a given set Ω and a set of generators Z = {zl}

L
l=1, let us define the VT energy of Z as

follows:

Ec
V T (Z ) =

∫

x∈Ω

EV T (x)d x , (2.4)

where

EV T (x) = min
l=1,··· ,L

ρ(x)|x − zl |
2. (2.5)
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The superscript “c” denotes continuous case in order to distinguish with the discrete case.
More generally, for any set of points Z = {zl}

L
l=1 and any partition U = {Ul}

L
l=1 of Ω, the

classical clustering energy of (Z ;U ) can be defined as:

Ec(Z ;U ) =
L∑

l=1

∫

x∈Ul

ρ(x)|x − zl |
2d x . (2.6)

Note that U = {Ul}
L
l=1 are not necessarily the Voronoi regions corresponding to the set of

generators Z = {zl}
L
l=1 in the definition.

Combining Eqs. (2.1) and (2.4) together, we can rewrite the VT energy as

Ec
V T (Z ) =

L∑

l=1

∫

x∈Vl

ρ(x)|x − zl |
2d x = Ec(Z ;V ), (2.7)

where V = {Vl}
L
l=1 are the corresponding Voronoi regions generated by {zl}

L
l=1. According

to Eq. (2.5), it is clear that for a fixed set of generators {zl}
L
l=1, the VT energy

Ec
V T (Z ) = min

U={Ul}
L
l=1

Ec(Z ;U ).

In fact we have a stronger conclusion stated below which is proved in [10]:

Theorem 2.1. For a given domain Ω, the classical clustering energy E(Z ;U ) reaches its

minimum only if (Z ;U ) form a CVT of Ω, i.e, U are Voronoi regions of Ω generated by the

generators Z and simultaneously, each zl is the centroid of Ul .

Let us define a projection function πU : Ω→ {1, · · · , L} which maps each point x to its
cluster index, i.e., for any point x ∈ Ω,

πU (x) = l∗, if x ∈ Ul∗ (i.e., x ∈ Ul∗). (2.8)

Then the classic clustering energy (2.6) can be rewritten in a much general manner

Ec(Z ;U ) =

∫

x∈Ω

E (x)d x ,

where

E (x) = ρ(x)|x −wπU (x)|
2. (2.9)

Once the clusters U = {Ul}
L
l=1 are determined, the boundaries are defined by

∂U = ∪L
l=1∂ Ul .

A well known algorithm to construct CVTs is the so called Lloyd’s algorithm, see, e.g.,
[19,29,30] for details.
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Algorithm CVT-A (Lloyd’s). Assume we are given a domain Ω, a positive integer L and
a density function ρ(x) defined on Ω. Let us choose arbitrarily L points {zℓ}

L
ℓ=1 ∈ Ω.

1. Compute the Voronoi clusters {Vℓ}
L
ℓ=1 of Ω with respect to {zℓ}

L
ℓ=1.

2. For each cluster Vℓ, ℓ= 1, · · · , L, compute the cluster mean zℓ.

3. Once zℓ and zℓ are the same, terminate the loop and return the current configu-
ration
�
{zℓ}

L
ℓ=1; {Vℓ}

L
ℓ=1

�
; otherwise, set zℓ = zℓ for ℓ = 1, · · · L and go to Step

1.

According to the definition of Voronoi regions and centroids, the VT energy will be
guaranteed to be decreased along the iterations unless a local minimizer is reached.

2.3. Discrete cases

We can easily derive the discrete version of CVT by simply replacing the integration by
summation. Let us say the discretized domain of Ω is D. Given the density function ρ(·)
defined on D, the centroid z̄ of its subset U can be written as:

z̄d =

∑
U xρ(x)∑
U ρ(x)

. (2.10)

If we choose randomly a set of points Z = {zl}
L
l=1 as generators and an arbitrary

partition U = {Ul}
L
l=1 of D is given, the classic clustering energy then is:

Ed(Z ;U ) =
∑

x∈D

E (x) =
∑

x∈D

ρ(x)|x − zπU (x)|
2.

Moreover, if the partition U = {Ul}
L
l=1 of D is the Voronoi tessellation V = {Vl}

L
l=1

associated with Z = {zl}
L
l=1, we can derive the VT energy of Z for the discrete case

similarly:

Ed
V T (Z ) =

L∑

l=1

∑

x∈Vl

ρ(x)|x − zl |
2. (2.11)

Algorithm CVT-A is also applicable to the discrete cases without significant modifica-
tion. The computational complexity of Algorithm CVT-A is in general O (k× L × N) where
k denotes the total number of iterations and N is the number of points which belong to
D. Points transfers will not happen until the end of each iteration in Algorithm A, i.e., it
does not account for the change of the cluster means until all centroids are computed. In
order to take into account changes of cluster means as soon as they are determined, the
following accelerated version was developed.
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Algorithm CVT-B. Assume the discrete domain D is given. We have a positive integer
L and choose arbitrarily L points {zℓ}

L
ℓ=1 ∈ D. Then we compute the Voronoi clusters

{Vℓ}
L
ℓ=1 associated with {zℓ}

L
ℓ=1 ∈ D.

1. For each x ∈ D,

(a) evaluate the classic clustering energy for all possible transfers of x from its
current cluster Vℓ to any of the other clusters Vk, k = 1, . . . , L, k 6= ℓ;

(b) if the test transfer of x from Vℓ to Vm decreases the classic clustering energy
the most, then

i. set x ∈ Vm;
ii. recompute the centroids z̄ℓ and z̄m of the modified clusters Vℓ and Vm,

then set zℓ = z̄ℓ and zm = z̄m, respectively.

2. If no transfer occurs, terminate the loop and return the current configuration�
{zℓ}

L
ℓ=1; {Vℓ}

L
ℓ=1

�
; otherwise, go to Step 1.

Both Algorithms CVT-A and CVT-B result in a k-means clustering. The classic clustering
energy is guaranteed to be decreased after each iteration in both Algorithms CVT-A and
CVT-B, and finally converges to its minimum. The efficiency of Algorithm CVT-B lies on
the fact that an iteration of Algorithm CVT-B leads to a much larger decrease in the energy
than does an iteration of Algorithm CVT-A. Thus a much smaller number of iterations is
required for Algorithm CVT-B to converge. Practically, a hybrid approach is feasible in
which one starts with the Algorithm CVT-A and then switches to Algorithm CVT-B. For
further discussions on the comparison of Algorithms CVT-A and CVT-B and some possible
improvements, see [14,17,32] for details.

3. An edge-weighted Centroidal Voronoi Tessellation model and its

implementation algorithms

In this section, first we introduce an edge energy to represent the length of cluster
boundaries. And the further introduced the so called edge-weighted clustering energy is
the key improvement we have made to the classic CVTs. Second, due to the new introduced
edge energy, we derive a concise formula of the new distance function incorporated with
the edge-weighted CVT clustering energy. Accordingly, the new Voronoi regions can be
easily computed based on the new distance function. Finally the detailed implementations
of our algorithms are provided with some discussions.

3.1. Edge energy and the length of boundaries

To be rigorous, let us make some conventions first. Recall that, we are handling an
open set Ω ∈ Rn. In addition we are given a partition U = {Ul}

L
l=1 of Ω and a set of

points Z = {zl}
L
l=1 in Ω. Note that, U = {Ul}

L
l=1 is an arbitrary partition, and as a result,

Z = {zl}
L
l=1 is not necessarily the generators of U = {Ul}

L
l=1.
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For each point x ∈ Ω, let Nr(x) denote a local neighborhood of x , which can be a cube
or a ball centered at x (if Nr(x) represents a cube, its side length is r; or r is the radius if
Nr(x) denotes a ball). Every y ∈ Nr(x) is called a neighbor point of x . Furthermore, we
define a local characteristic function for each x ∈ Ω, i.e., X(x;U ): Nr(x)→ {0,1} as

X(x;U )
�

y
�
=

¨
1, if πU (y) 6= πU (x);
0, otherwise.

(3.1)

With the help of these notations, the edge energy of a point x can be written as

E c
L (x ;U ) =

∫

Nr(x)

X(x;U )(y)d y. (3.2)

Therefore the total edge energy is simply the integration of E c
L (x ;U ), i.e., edge energy of

each single point x , over the whole domain:

Ec
L (U ) =

∫

Ω

E c
L (x ;U )d x =

∫

Ω

∫

Nr (x)

X(x;U )(y)d yd x . (3.3)

In fact, the edge energy Ec
L (U ) is proportional to the “real length" of the cluster bound-

aries if r is small enough. The analytical results are given in [32] which we will restate in
Theorem 3.1.

Theorem 3.1. Define the total edge energy as (3.3), we have

lim
r→0

Ec
L (U )→ αr3 L,

where L is the length (surface area for n ≥ 3) of the clusters boundaries, and α is a constant

only depending on the shape of the neighborhood Nr(x), for the special case of the disc shaped

neighborhood of 2D data set, α= 4/3.

Note that for 2D data set, L is the length of the boundaries; for n ≥ 3, the bound-
aries are (n − 1) dimensional manifolds and L is actually the surface area or volume of
those manifolds. Theorem 3.1 is proved only for 2D data set in [32], the proof in higher
dimensional space is essentially the same.

Combining the classic clustering energy (2.6) and the edge energy (3.3), we define the
edge-weighted clustering energy as follows:

bEc(W ;U ) = Ec(W ;U ) +λEc
L (U )

=

∫

x∈Ω

�
E (x)+λE c

L (x ;U )
�

d x

=

L∑

l=1

∫

x∈Ul

ρ(x)|x −wl |
2d x +λ

∫

x∈Ω

∫

y∈Nr (x)

X(x ,U )(y)d yd x , (3.4)

where λ > 0 is a positive weight parameter. The energy consists of two parts:
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• First, classic clustering energy which comes from the classic CVT model.

• Second, edge energy which is related to the “length of boundaries".

Formulas (3.2)-(3.4) for the discrete case can be easily derived as follows. For a single
point x ∈ D, the edge energy of x is given by:

E d
L (x ;U ) =
∑

y∈Nr (x)

X(x ,U )(y), (3.5)

and then the total edge energy is the summation of the edge energy of each points instead
of integration in the continuous case:

Ed
L (U ) =
∑

x∈D

E d
L (x ;U ). (3.6)

Similarly, we can write the edge-weighted clustering energy for the discrete case as:

bEd(W ;U ) = Ed(W ;U ) +λEd
L (U )

=
∑

x∈D

�
E (x)+λE d

L (x ;U )
�

=

L∑

l=1

∑

x∈Ul

ρ(x)|x −wl |
2+λ
∑

x∈D

∑

y∈Nr (x)

X(x;U )(y). (3.7)

Clearly, the second term is the weighted edge energy of the whole data set. The new
energy incorporates information of the boundaries length and will play a crucial role in
our new method. Due to the weight parameter λ, smoothness of the resulting boundaries
can be controlled effectively. Moreover, if we carefully examine equation (3.7), one may
find that once we transfer a point x from its current cluster to another cluster, not only the
edge energy of x , but the edge energy of neighbor points y of x changes. In contrast, the
transfer of x will not affect the classic clustering energy of any other points.

3.2. Edge-weighted distance

Now we need to construct an edge-weighted distance function to determine the distance
from a point to a generator. For simplicity, let us consider the discrete case.

The equation (3.7) can be rewritten as

bEd(W ;U ) =



∑

y∈D\x

ρ(y)|y −wπU (y)|
2


+ρ(x)|x −wπU (x)|

2

+λ



∑

y∈D\x

E d
L (y;U )


+λE d

L (x ;U ). (3.8)
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If we transfer a point x from its current cluster Ul to another cluster Uk, the total energy
variation will come from the variation of the four terms on the right hand side of Eq. (3.8).
Obviously, the transfer will not affect the first term on the right-hand side of (3.8). The
change of the second term can be easily derived as

ρ(x)
�
|x −wk|

2− |x −wl |
2
�

. (3.9)

Let ns denote the number of points within Us ∩Nr(x)\ x . Under the current configuration,
the weighted edge energy of point x is

λE d
L (x ;U ) = λ

∑

y∈Nr (x)

X(x;U )(y) = λ
∑

i∈{1,··· ,L}\{l}

ni. (3.10)

Similarly, after we move x to cluster Uk, its weighted edge energy changes to

λE d
L (x ;U ) = λ

∑

y∈Nw(x)

X(x;U )(y) = λ
∑

i∈{1,··· ,L}\{k}

ni. (3.11)

Therefore, transfer point x from its current cluster Ul to another cluster Uk will result in a
change in the fourth term λE d

L (x), which can be derived as

λ
∑

i∈{1,··· ,L}\{k}

ni −λ
∑

i∈{1,··· ,L}\{l}

ni = λ
�
nl − nk

�
. (3.12)

Note that transferring point x from Ul to Uk not only affects the edge energy of x itself
but also all of the neighbor points y of x . Let us turn our attention to the term E d

L (y).
If point y is outside of Nr(x), its edge energy will not be affected by the transfer of x .
However, if y ∈ Nr(x) ∩ Up, i.e., y is a neighbor point of x , we need to consider three
different cases.

• First, if p 6= l, k, the edge energy E d
L (y) will be kept the same.

• Second, if p = l, moving x out of cluster Ul means y ∈ Ul has one more neighbor
point x which does not belong to the same cluster as y. Thus, the edge energy of y

will be increased by λ.

• Third, if p = k, moving x into the cluster Uk implies y ∈ Uk has one more neighbor
point which belongs to the same cluster as y. Therefore, the edge energy of y will
be decreased by λ.

Combining all of the discussions above and transferring x from Ul to Uk will result in a
change in λ
∑

y∈D\x E
d
L (y), which can be expressed as:

λnl −λnk = λ(nl − nk). (3.13)

Based on all of the above analysis, we finally arrive at the variation of the total edge
energy bEd due to the moving of x from Ul to Uk by simply summing (3.9), (3.12) and
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(3.13) together ρ(x)|x − wk|
2 − ρ(x)|x − wl |

2 + 2λ(nl − nk) which can be rewritten in a
more symmetrical manner as

(ρ(x)|x −wk|
2− 2λnk)− (ρ(x)|x −wl |

2− 2λnl). (3.14)

Formula (3.14) indicates that the edge-weighted distance from a point x to a generator
wk can be defined as

dist(x , wk) =
p
ρ(x)|x −wk|2 + 2λñk, (3.15)

where ñk = |Nr(x)| − nk − 1, which is the number of points within Nr(x) \ (Uk ∪ x).
In conclusion, in order to decrease the total edge-weighted clustering energy bE(W ;U )

the most, we need to transfer a point x to the cluster whose generator is the closest one to
it, in the sense that the edge-weighted distance defined by (3.15) is the shortest.

Note that for the continuous case, the above derivation is also applicable: the edge-
weighted distance function has the same form except that ñk = |Nr(x) \Uk| represents the
area of Nr(x) \ Uk instead of the number of points inside Nr(x) \ Uk. Moreover we should
be aware that the edge-weighted distance is not a rigorous norm since it does not satisfy
the triangular inequality. But it is good enough to determine the Voronoi regions to the
corresponding generators.

3.3. Edge-weighted Voronoi regions

Although concepts developed above are applicable to both the continuous and discrete
cases, we will consider the discrete cases only in the following for simplicity.

Assume we have a set of generators Z = {zl}
L
l=1 ∈ D, the edge-weighted Voronoi

regions eQ = {eQ l}
L
l=1 are defined as

eQk =
n

x ∈ D : dist(x , wk)≤ dist(x , wl),

for l = 1, · · · , L
o

, k = 1, · · · , L. (3.16)

The distance function is defined by (3.15).
If we fix the generators Z , Eq. (3.16) indicates that the edge-weighted Voronoi tessel-

lation {eQ l}
L
l=1 is the minimizer of the edge-weighted energy bEd(Z ,U ), i.e.,

eQ = argminU bEd(Z ;U ).

The EWVT energy for a fixed set of generators Z = {zl}
L
l=1 can be written as

bEd
EW V T (Z ) = bEd(Z ; eQ). (3.17)

Thus, if we are given a set of generators Z = {zl}
L
l=1, we can adopt the following

algorithm to construct the edge-weighted Voronoi regions associated with Z = {zl}
L
l=1.
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Algorithm EWVT. Assume we have a set of generators Z = {zl}
L
l=1 and an arbitrary

segmentation {eUl}
L
l=1 of the discrete set D. (Again, {eUl}

L
l=1 are not necessarily the

edge-weighted Voronoi regions generated by Z = {zl}
L
l=1.)

1. For every x ∈ D,

(a) evaluate the distance defined by Eq. (3.15) from the point x to all of the
generators {zl}

L
l=1;

(b) transfer the point x to the cluster whose generator is the closest one to it.
(Note that this is equivalent to an update of the partition {eUl}

L
l=1).

2. If no point is moved, terminate the loop and {eUl}
L
l=1 is the edge-weighted Voronoi

region {eQ l}
L
l=1 associated with Z = {zl}

L
l=1; otherwise, go to Step 1.

Clearly algorithm EWVT results in strict decrease in the energy until we arrive at an
edge-weighted Voronoi tessellation of D. Thus, the compactness of D guarantees the con-
vergence of the algorithm.

3.4. Edge-weighted centroidal Voronoi tessellations: definition and algorithms

Algorithm EWVT provides an effective and efficient approach to determine the edge-
weighted Voronoi regions Q̃ = {eQ l}

L
l=1 for a given set of generators. However on the other

hand, if we have computed the edge-weighted Voronoi regions Q̃ = {eQ l}
L
l=1, a method

to determine the corresponding edge-weighted centroids of {eQ l}
L
l=1, i.e., the minimizer of

the edge-weighted energy bE(∗, eQ) ( eQ are fixed), is in demand. In fact, because the edge
energy E d

L (x) depends only on the current partition instead of the generators, Eq. (3.4)

implies that the edge-weighted centroids are exactly the classic centroids of {eDl}
L
l=1 given

by Eq. (2.10).

Definition 2. Assume we have an edge-weighted Voronoi tessellation ({z̃l}
L
l=1; {eQ l}

L
l=1) of

D, if the generators {zl}
L
l=1 are simultaneously the centroids of the associate edge-weighted

Voronoi regions {eQ l}
L
l=1, we call it an edge-weighted centroidal Voronoi tessellation (EWCVT)

of D .

From the above analysis, the following theorem is pretty straightforward:

Theorem 3.2. Only if (Z ; eQ) form an EWCVT ofD, i.e., eQ are edge-weighted Voronoi regions

of D associated with the generators Z and simultaneously Z are the corresponding centroids

of the regions eQ, the minimum of edge-weighted energy bE(Z ; eQ) is achieved.

Based on the principle of energy reduction, we construct the following algorithm to
calculate the EWCVTs.
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Algorithm EWCVT-A. Suppose we are given an integer L and an arbitrary partition
{eUl}

L
l=1 of the discrete set D.

1. Compute centroid z̄l by (2.10) for each cluster eUl , l = 1, · · · , L,.

2. Set {z̄}L
l=1 as generators, adopt Algorithm EWVT to generate the associate edge-

weighted Voronoi clusters eQ ′ = {eQ′
l
}L

l=1 .

3. If there is no difference between the edge-weighted Voronoi clusters {eQ′
l
}L

l=1 and

{eUl}
L
l=1, terminate the loop and return ({zl}

L
l=1; {eQ′

l
}L

l=1); otherwise, set eUl = eQ′l
for l = 1, · · · , L and go to Step 1.

In Step 2 of Algorithm EWCVT-A, the generators will not be updated until one iteration
completes even the point transfer occurs during the iteration. Therefore an accelerated
version of Algorithm EWCVT-A can be naturally developed by updating the generators of
the clusters immediately as long as point transfer occurs.

Algorithm EWCVT-B. Assume we are given an integer L and an arbitrary partition
{Ul}

L
l=1 of discrete set D. Let us compute the centroids {zl}

L
l=1 of {Ul}

L
l=1 and take them

as the generators.

1. For every x ∈ D,

(a) evaluate the distance defined by Eq. (3.15) from the point x to all of the
generators {zl}

L
l=1;

(b) transfer the point x to the cluster whose generator is closest to it in the sense
of the distance, say, from Ul to Uk;

(c) recompute the centroids z̄ℓ and z̄m of the modified clusters Uℓ and Uk, then
set zℓ = z̄ℓ and zk = z̄k, respectively.

2. if no point is moved, terminate the loop and return ({zl}
L
l=1; {Ul}

L
l=1) (i.e.,

{eQ l}
L
l=1) = {Ul}

L
l=1)); otherwise, go to Step 1.

Due to the compactness of D, both EWCVT-A and EWCVT-B will be guaranteed to
converge to a local minimizer of the EWVT energy. Because of real time modification of
the configuration in each iteration, Algorithm CVT-B normally leads to a larger energy
decrease in each step than that of Algorithm EWCVT-A. Therefore algorithm EWCVT-B is
more efficient than EWCVT-A. The complexity of algorithm EWCVT-B can be represented
by O (k × r2 × L × N) where k denotes the number of iterations, so it is more expensive
than the CVT-based algorithms by r2 times. But if r is small, the extra computational cost
can be ignored. Moreover, because the edge-weighted energy variation will be quite small
compared with that of the starting steps, we do not need to wait until the condition to
exit the loops is strictly satisfied for both algorithms. In most practical cases, the EWVT
energy of each iteration will be recorded. The algorithm will be terminated once the



Edge-Weighted CVT 235

decrease of the EWVT energy is within some prescribed tolerance. In most of our numerical
experiments, we exit the loop [14] if

|Ei+1 − Ei|

Ei

< L%. (3.18)

In fact a lot of accelerating strategies for determining CVTs [14, 22, 26] are available.
Fortunately most of them are applicable to our EWCVT model without significant mod-
ification. The VT energy only needs to be replace with the EWVT energy in any of the
accelerated strategies. As a matter of fact, the most likely point transfer will occur for the
points which are closer to the segment boundary. Thus in each iteration in EWCVT-A and
EWCVT-B, we only need to consider the test transfer of edge points . Extensive numer-
ical experiments have shown this scheme is a satisfied strategy for acceleration purpose.
Moreover, it is also a good option to implement a hybrid approach in which one starts with
EWCVT-A or EWCVT-B by evaluating all of the points transfers and then switches to the
scheme to evaluate the edge points only.

4. Experiments and discussions

Due to Theorem 2, if the neighborhood size r is small enough, our algorithms EWCVT-A
and EWCVT-B are actually minimizing the weighted energy

EV T +αλr3 L (4.1)

a balance between VT energy EV T and the edge length L with weight αλr3, where constant
α depends on the shape of neighborhood Nr(x). If λr3 → 0 our model degenerates to
the classic CVT method. Moreover increasing λ or r results in increment of the edge
length weight. In the following subsections, we will illustrate the effect of these parameters
through the numerical examples and the corresponding discussions. Note, without explicit
declarations, we assume density function ρ(·) is uniform.

4.1. Effect of weighting factor λ

To compare with our EWCVT model, we first give the segmentation result produced by
classic CVTs in Fig. 1. We will first show the effect of the weight parameter λ in Figs. 2, 3,

Figure 1: Segment a square into 5 lusters. Image size = 100× 100. The segmentation is obtained byusing lassi CVT model, i.e., Algorithm CVT-B.
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Figure 2: Segment a square into 5 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. r = 7, λ = 0.01. Right image is the orresponding energy variation plot.

Figure 3: Segment a square into 5 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. r = 7, λ = 1. The image in the right is the orresponding energy variation plot.
4 and 5. In Fig. 2, the value of λ is set to be 0.01. Note that, if λ = 0, our EWCVT model
reduces to the classic CVT model since the edge energy is always equal to 0. Thus, if λ
is quite small, we can expect the segmentation produced by EWCVT model to be pretty
similar with that of classic CVT model since the classic VT clustering energy will dominate
the iteration process. Besides, the energy variation plot of Fig. 2 further supports our
assertions. Note, the edge energy is almost zero through the iteration process and the
edge-weighted clustering energy coincides with the classic clustering energy very well which
implies the dominate energy term is the classic clustering energy. Therefore, the final
segmentation in Fig. 2 is almost exactly the same as that of classic CVTs if we simply rotate
the segmented image in Fig. 2 counter-clock wise by 90◦.

The segmentation in Fig. 3 is obtained by increasing λ to 1. Clearly, the resulting
boundaries are not straight line segments anymore. Moreover, from the energy variation
plot, the classic clustering energy is of the same magnitude with the edge energy. Thus,
the iteration process is guided by the balance of the classic clustering energy and the edge
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Figure 4: Segment a square into 5 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. For the �rst row: the �rst image is the Voronoi region orresponding to a set of randomlyhosen generators. The other images are from iteration 17, 52, 74, respetively. r = 7, λ = 5. For theseond row, the image is the orresponding energy variation plot.
energy. The segmentation does not look like the segmentation result obtained by classic
CVTs.

If we keep increasing λ, something interesting happens. Let us look at Fig. 4. One of
the clusters disappears! This unusual event well reveals the nature of our EWCVT model.
Since the value of λ is so large, the edge energy will dominate the iteration process other
than the classic clustering energy which is clearly illustrated by the energy variation plot.
Thus, the “length of boundaries" will be dramatically decreased, with the cost that some
clusters disappear. It is easy to see that the “length of boundaries" of the last image in Fig. 4
is much shorter than that of the initial image.

Furthermore, we give an “extreme" example in Fig. 5 in which the value of λ is set to
be 10, 1000 times larger than that of Fig. 2. Finally, we have only one cluster winning out.
No boundaries at all! The edge energy decreases to 0 at the end. In addition, the plot of
edge weighted clustering energy is pretty similar as that of the edge energy which implies
the edge energy dominates the iteration process.

Practically, examples shown in Figs. 4 and 5 may be viewed as bad results since one
may not want any cluster disappears during the iteration. But due to the existence of the
edge energy, some clusters with defects will naturally disappear. Those clusters introduce
too much edge energy to the total energy and then will be eliminated during the process.
This property is completely different with the classic CVT where the number of clusters is
fixed in the whole process. Further discussion will be provided later.
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Figure 5: Segment a square into 5 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. The �rst image is the Voronoi region orresponding to a set of randomly hosen generators.The other images are from iteration 1, 27, 30, 75 and 89 respetively. r = 7, λ = 10. The image in thelast row is the orresponding energy variation plot.
4.2. Effect of the size of Nr

The effects of r roughly fall into two parts: the accuracy of (4.1), and the weight of
edge length. Theoretically speaking, a smaller value of r implies the edge energy approx-
imates the edge length more accurately as stated in Theorem 2. Thus the effect of r is
more complex than λ. In this subsection, we will show the effect of r through examples
in Figs. 6, 7, 8 and 9. In all of these examples, we adopt the same initial clusters, i.e., one
disk whose radius is 15, one little square whose side length is 10, and the left part of the
domain.

In Fig. 6, the size of the neighborhood Nr is 3 which is smaller than both of the disk and
the little square. The length of boundaries dramatically increases during the first several
iteration steps. And the final result looks like the result produced by the classic CVT model.
In fact, smaller Nr means smaller edge energy. The classic clustering energy is the main
factor resulting in the final segmentation in Fig. 6.

If we set r equal to 5, Nr becomes comparable to both of the disk and the little square,
but no larger than them. The edge energy and the classic clustering energy will have a
balanced effect during the iteration. Therefore, the resulting segmentation in Fig. 7 is a
balanced result of the edge energy and the classic clustering energy. The boundary length
of the disk and the little square increases a little bit and the iteration stops very soon.

Then a question will naturally rise – What will happen when Nr is bigger than one of
the clusters? Fig. 8 answers the question. In this example, we set r to be 7 such that Nr is
bigger than the little square but smaller than the disk. The little square disappears! This
is a reasonable consequence since larger Nr implies the edge energy will take more effect
during the iteration. Once again, “larger" edge energy will result in shorter boundary.

Fig. 9 shows another “extreme" case when we set Nr much larger than both of the disk
and little square. Again, we have no boundary left which is an expectable result.
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Figure 6: Segment a square into 3 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. The �rst image is the initial lusters. The other images are from iteration 1, 12, 17, 28 and41 respetively. r = 3, λ= 3.
Figure 7: Segment a square into 3 lusters. Image size = 100× 100. The segmentation is obtainedby EWCVT-B. The �rst image is the initial lusters. The other images are from iteration 1, 2 and 3respetively. r = 5, λ = 3.
Figure 8: Segment a square into 3 lusters. Image size = 100× 100. The segmentation is obtained byEWCVT-B. The �rst image is the initial lusters. The other images are from iteration 1, 2, 3 and 4respetively. r = 7, λ = 3.

From (4.1), if we change λ and r simultaneously while keeping λr3 constant we can
expect same clustering results. Let us look at Figs. 3 and 10 in which the value of λ and
r are carefully chosen such that λr3 is roughly a constant. The edge energy plots in both
of Figs. 3 and 10 are almost the same which demonstrate the edge energy is well kept as a
constant. In addition, the final segmentation in Figs. 3 and 10 are almost the same as each
other, i.e., they are just mirror symmetric to each other.
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Figure 9: Segment a square into 3 lusters. Image size = 100× 100. The segmentation is obtainedby EWCVT-B. The �rst image is the initial lusters. The other images are from iteration 1, 18 and 21respetively. r = 13. λ= 3

Figure 10: Segment a square into 5 lusters. Image size = 100×100. The segmentation is obtained byEWCVT-B. r = 5, λ = 2.7. The image in the right is the energy variation plot.
4.3. Large number of clusters

The number of clusters in previous experiments is less than 10. For large number of
clusters, the experiments show that the difference between EWCVT and the classic CVT
becomes insignificant. Besides, it suggests that the classic CVT has already done a good
job to make short boundaries in the case of large number of clusters.

A much more sophisticated example is given in Fig. 12. We divide the domain into 64
clusters with a nonuniform density function defined by

ρ(x , y) = Aexp

�
−
(x − x0)

2

2σ2
x

−
(y − y0)

2

2σ2
y

�
+ 1, (4.2)

where A = 100, (x0, y0) = (30,30) and σx = σy = 20. Clearly, in the region of higher
value of the density function, the clusters are much denser and smaller. In the rest part
of the domain, the density function roughly equals to 1 which makes it roughly uniform.
Therefore, the clusters in such region are much uniformly distributed and their size are
roughly the same. One can compare it with the right image in Fig. 11, which is obtained
by the classic CVT method. One can find that there is no much difference between the
results of the EWCVT and the classic CVT.



Edge-Weighted CVT 241

Figure 11: Segment a square into 64 lusters. The density funtion is not uniform. Image size =
200×200. The segmentation is obtained by CVT-B. The �rst image is the Voronoi region orrespondingto a set of randomly hosen generators. The seond image is the �nal segmentation. Totally, 195iterations involved.

Figure 12: Segment a square into 64 lusters. The density funtion is not uniform. Image size =
200×200. The �rst image is the Voronoi region orresponding to a set of randomly hosen generators.The seond image is the �nal segmentation obtained by EWCVT-B. Totally 263 iterations involved.

In Fig. 13, we adopt 500 clusters as the initial clusters. In the final segmentation, only
344 clusters left. Some clusters disappear due to the reason discussed in previous sections.
It is pretty close to the classic CVT configuration with 344 clusters.

5. Concluding remarks

In this paper, we propose an Edge-Weighted Centroidal Voronoi Tessellation model
for general domain clustering. Extensive examples are provided to illustrate the unique
nature of our model compared with the classic CVT model. It preserves the beauty of the
classic CVT as well as obtaining a shorter boundary. The EWCVT is especially useful for
the case of small number of clusters. Our model can be used as a general data clustering
technique. Although only 2D data sets are used in the experiments of this paper, the
proposed methods are applicable to 3D or higher dimensional data sets. We expect more
sophisticated applications of our methods in the disciplines such as data mining, signal
processing, computer graphics and vision, etc., will be developed in the near future.
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Figure 13: Segment a square into 500 lusters. The density funtion is not uniform. Image size= 200 × 200. The segmentation is obtained by EWCVT-B. The �rst image is the Voronoi regionorresponding to a set of randomly hosen generators. The other images of the �rst row are fromiteration 1, 20, and 96 respetively. The bottom row are the initial and �nal lustering of the lassiCVT respetively. r = 7, λ= 10.
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