Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-36-31,
author = {Siyu and Liang and liangsiyu@amss.ac.cn and 7216 and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. and Siyu Liang and Ping and Zhang and zp@math.ac.cn and 7217 and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. and Ping Zhang and Rongchan and Zhu and zhurongchan@126.com and 7218 and Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China. and Rongchan Zhu},
title = {Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations},
journal = {Communications in Mathematical Research },
year = {2020},
volume = {36},
number = {1},
pages = {31--50},
abstract = {
The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system, which in particular extends a similar type of result for the classical 3-D incompressible Navier-Stokes system.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2020-0002}, url = {http://global-sci.org/intro/article_detail/cmr/15788.html} }
TY - JOUR
T1 - Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations
AU - Liang , Siyu
AU - Zhang , Ping
AU - Zhu , Rongchan
JO - Communications in Mathematical Research
VL - 1
SP - 31
EP - 50
PY - 2020
DA - 2020/03
SN - 36
DO - http://doi.org/10.4208/cmr.2020-0002
UR - https://global-sci.org/intro/article_detail/cmr/15788.html
KW - Anisotropic Navier-Stokes system, Littlewood-Paley theory, lifespan.
AB -
The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system, which in particular extends a similar type of result for the classical 3-D incompressible Navier-Stokes system.
Siyu Liang, Ping Zhang & Rongchan Zhu. (2020). Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations.
Communications in Mathematical Research . 36 (1).
31-50.
doi:10.4208/cmr.2020-0002
Copy to clipboard