- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
An Effective Initialization for Orthogonal Nonnegative Matrix Factorization
J. Comp. Math., 30 (2012), pp. 34-46
Published online: 2012-02
[An open-access article; the PDF is free to any online user.]
- BibTex
- RIS
- TXT
@Article{JCM-30-34,
author = {Xuansheng Wang, Xiaoyao Xie and Linzhang Lu},
title = {An Effective Initialization for Orthogonal Nonnegative Matrix Factorization},
journal = {Journal of Computational Mathematics},
year = {2012},
volume = {30},
number = {1},
pages = {34--46},
abstract = { The orthogonal nonnegative matrix factorization (ONMF) has many applications in a variety of areas such as data mining, information processing and pattern recognition. In this paper, we propose a novel initialization method for the ONMF based on the Lanczos bidiagonalization and the nonnegative approximation of rank one matrix. Numerical experiments are given to show that our initialization strategy is effective and efficient.},
issn = {1991-7139},
doi = {https://doi.org/10.4208/jcm.1110-m11si10},
url = {http://global-sci.org/intro/article_detail/jcm/8415.html}
}
TY - JOUR
T1 - An Effective Initialization for Orthogonal Nonnegative Matrix Factorization
AU - Xuansheng Wang, Xiaoyao Xie & Linzhang Lu
JO - Journal of Computational Mathematics
VL - 1
SP - 34
EP - 46
PY - 2012
DA - 2012/02
SN - 30
DO - http://doi.org/10.4208/jcm.1110-m11si10
UR - https://global-sci.org/intro/article_detail/jcm/8415.html
KW - Lanczos bidiagonalization
KW - Orthogonal nonnegative matrix factorization
KW - Low-rank approximation
KW - Nonnegative approximation
AB - The orthogonal nonnegative matrix factorization (ONMF) has many applications in a variety of areas such as data mining, information processing and pattern recognition. In this paper, we propose a novel initialization method for the ONMF based on the Lanczos bidiagonalization and the nonnegative approximation of rank one matrix. Numerical experiments are given to show that our initialization strategy is effective and efficient.
Xuansheng Wang, Xiaoyao Xie & Linzhang Lu. (1970). An Effective Initialization for Orthogonal Nonnegative Matrix Factorization.
Journal of Computational Mathematics. 30 (1).
34-46.
doi:10.4208/jcm.1110-m11si10
Copy to clipboard