- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Compute a Celis-Dennis-Tapia Step
- BibTex
- RIS
- TXT
@Article{JCM-23-463,
author = {},
title = {Compute a Celis-Dennis-Tapia Step},
journal = {Journal of Computational Mathematics},
year = {2005},
volume = {23},
number = {5},
pages = {463--478},
abstract = { In this paper, we present an algorithm for the CDT subproblem. This problem stems from computing a trust region step of an algorithm, which was first proposed by Celis, Dennis and Tapia for equality constrained optimization. Our algorithm considers general case of the CDT subproblem, convergence of the algorithm is proved. Numerical examples are also provided. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8832.html}
}
TY - JOUR
T1 - Compute a Celis-Dennis-Tapia Step
JO - Journal of Computational Mathematics
VL - 5
SP - 463
EP - 478
PY - 2005
DA - 2005/10
SN - 23
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8832.html
KW - The CDT subproblem
KW - Local solution
KW - Global solution
KW - Dual function
AB - In this paper, we present an algorithm for the CDT subproblem. This problem stems from computing a trust region step of an algorithm, which was first proposed by Celis, Dennis and Tapia for equality constrained optimization. Our algorithm considers general case of the CDT subproblem, convergence of the algorithm is proved. Numerical examples are also provided.
Gai-Di Li & Ya-Xiang Yuan. (1970). Compute a Celis-Dennis-Tapia Step.
Journal of Computational Mathematics. 23 (5).
463-478.
doi:
Copy to clipboard