- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence of the Explicit Difference Scheme and the Binomial Tree Method for American Options
- BibTex
- RIS
- TXT
@Article{JCM-22-371,
author = {},
title = {Convergence of the Explicit Difference Scheme and the Binomial Tree Method for American Options},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {3},
pages = {371--380},
abstract = { This paper is concerned with numerical methods for American option pricing. We employ numerical analysis and the notion of viscosity solution to show uniform convergence of the explicit difference scheme and the binomial tree method. We also prove the existence and convergence of the optimal exercise boundaries in the above approximations. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8857.html}
}
TY - JOUR
T1 - Convergence of the Explicit Difference Scheme and the Binomial Tree Method for American Options
JO - Journal of Computational Mathematics
VL - 3
SP - 371
EP - 380
PY - 2004
DA - 2004/06
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8857.html
KW - American option
KW - Explicit difference
KW - Binomial tree method
KW - Convergence
KW - Numerical analysis
KW - Viscosity solution
AB - This paper is concerned with numerical methods for American option pricing. We employ numerical analysis and the notion of viscosity solution to show uniform convergence of the explicit difference scheme and the binomial tree method. We also prove the existence and convergence of the optimal exercise boundaries in the above approximations.
Li-shang Jiang & Min Dai . (1970). Convergence of the Explicit Difference Scheme and the Binomial Tree Method for American Options.
Journal of Computational Mathematics. 22 (3).
371-380.
doi:
Copy to clipboard