- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Symplectic Computation of Hamiltonian Systems (I)
- BibTex
- RIS
- TXT
@Article{JCM-20-267,
author = {},
title = {Symplectic Computation of Hamiltonian Systems (I)},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {3},
pages = {267--276},
abstract = { We get $\tao^6$-terms of the formal energy of the mid-point rule, and use the mathematical pendulum to test the convergence of the formal energy. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8916.html}
}
TY - JOUR
T1 - Symplectic Computation of Hamiltonian Systems (I)
JO - Journal of Computational Mathematics
VL - 3
SP - 267
EP - 276
PY - 2002
DA - 2002/06
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8916.html
KW - Mid-point rule
KW - Formal energy
AB - We get $\tao^6$-terms of the formal energy of the mid-point rule, and use the mathematical pendulum to test the convergence of the formal energy.
Yi Fa Tang. (1970). Symplectic Computation of Hamiltonian Systems (I).
Journal of Computational Mathematics. 20 (3).
267-276.
doi:
Copy to clipboard