- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On the Hp Finite Element Method for the One Dimensional Singularly Perturbed Convection-Diffusion Problems
- BibTex
- RIS
- TXT
@Article{JCM-20-599,
author = {},
title = {On the Hp Finite Element Method for the One Dimensional Singularly Perturbed Convection-Diffusion Problems},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {6},
pages = {599--610},
abstract = { In this work, a singularly perturbed two-point boundary value problem of convection-diffusion type is considered. An hp version finite element method on a strongly graded piecewise uniform mesh of Shishkin type is used to solve the model problem. With the analytic assumption of the input data, it is shown that the method converges exponentially and the convergence is uniformly valid with respect to the singular perturbation parameter. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8945.html}
}
TY - JOUR
T1 - On the Hp Finite Element Method for the One Dimensional Singularly Perturbed Convection-Diffusion Problems
JO - Journal of Computational Mathematics
VL - 6
SP - 599
EP - 610
PY - 2002
DA - 2002/12
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8945.html
KW - hp-version finite element methods
KW - convection-diffusion
KW - singularly perturbed
KW - exponential
AB - In this work, a singularly perturbed two-point boundary value problem of convection-diffusion type is considered. An hp version finite element method on a strongly graded piecewise uniform mesh of Shishkin type is used to solve the model problem. With the analytic assumption of the input data, it is shown that the method converges exponentially and the convergence is uniformly valid with respect to the singular perturbation parameter.
Zhi Min Zhang. (1970). On the Hp Finite Element Method for the One Dimensional Singularly Perturbed Convection-Diffusion Problems.
Journal of Computational Mathematics. 20 (6).
599-610.
doi:
Copy to clipboard