- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Nonlinear Integer Programming and Global Optimization
- BibTex
- RIS
- TXT
@Article{JCM-17-179,
author = {},
title = {Nonlinear Integer Programming and Global Optimization},
journal = {Journal of Computational Mathematics},
year = {1999},
volume = {17},
number = {2},
pages = {179--190},
abstract = { This paper manages to transform the general nonlinear integer programming problem into an "equivalent" special continuous global minimization problem. Thus any effective global optimization algorithm can be used to solve nonlinear integer programming problems. This result will also promote the research on global optimization. We present an interval Branch-and-Bpund algorithm. Numerical experiments show that this approach is efficient. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9092.html}
}
TY - JOUR
T1 - Nonlinear Integer Programming and Global Optimization
JO - Journal of Computational Mathematics
VL - 2
SP - 179
EP - 190
PY - 1999
DA - 1999/04
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9092.html
KW - Integer programming
KW - Global minimization problem
KW - Branch-boundalgorithm
AB - This paper manages to transform the general nonlinear integer programming problem into an "equivalent" special continuous global minimization problem. Thus any effective global optimization algorithm can be used to solve nonlinear integer programming problems. This result will also promote the research on global optimization. We present an interval Branch-and-Bpund algorithm. Numerical experiments show that this approach is efficient.
Lian Sheng Zhang, Feng Gao & Wen Xing Zhu. (1970). Nonlinear Integer Programming and Global Optimization.
Journal of Computational Mathematics. 17 (2).
179-190.
doi:
Copy to clipboard