- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
An Accurate Numerical Solution of a Two Dimensional Heat Transfer Problem with a Parabolic Boundary Layer
- BibTex
- RIS
- TXT
@Article{JCM-16-27,
author = {},
title = {An Accurate Numerical Solution of a Two Dimensional Heat Transfer Problem with a Parabolic Boundary Layer},
journal = {Journal of Computational Mathematics},
year = {1998},
volume = {16},
number = {1},
pages = {27--39},
abstract = { A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically. The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is $\va$-uniform in the sense that the rate of convergence and error constant of the method are independent of the singular perturbation parameter $\va$. This means that no matter how small the singular perturbation parameter $\va$ is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9139.html}
}
TY - JOUR
T1 - An Accurate Numerical Solution of a Two Dimensional Heat Transfer Problem with a Parabolic Boundary Layer
JO - Journal of Computational Mathematics
VL - 1
SP - 27
EP - 39
PY - 1998
DA - 1998/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9139.html
KW - Linear convection-diffusion
KW - parabolic layer
KW - piecewise uniform mesh
KW - finite difference
AB - A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically. The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is $\va$-uniform in the sense that the rate of convergence and error constant of the method are independent of the singular perturbation parameter $\va$. This means that no matter how small the singular perturbation parameter $\va$ is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used.
C. Clavero, J.J.H. Miller, E. O’Riordan & Grigory I. Shishkin. (2019). An Accurate Numerical Solution of a Two Dimensional Heat Transfer Problem with a Parabolic Boundary Layer.
Journal of Computational Mathematics. 16 (1).
27-39.
doi:
Copy to clipboard