- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Nonconforming Finite Element Method of Streamline Diffusion Type for the Incompressible Navier-Stokes Equations
- BibTex
- RIS
- TXT
@Article{JCM-8-147,
author = {},
title = {A Nonconforming Finite Element Method of Streamline Diffusion Type for the Incompressible Navier-Stokes Equations},
journal = {Journal of Computational Mathematics},
year = {1990},
volume = {8},
number = {2},
pages = {147--158},
abstract = { A nonconforming finite element method of streamline diffusion type for solving the stationary and imcompressible Navier-Stokes equation is considered. Velocity field and pressure field are approximated by piecewise linear and piecewise constant functions, respectively. The existence of solutions of the discrete problem and the strong convergence of a subsequence of discrete solutions are established. Error estimates are presented for the uniqueness case. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9428.html}
}
TY - JOUR
T1 - A Nonconforming Finite Element Method of Streamline Diffusion Type for the Incompressible Navier-Stokes Equations
JO - Journal of Computational Mathematics
VL - 2
SP - 147
EP - 158
PY - 1990
DA - 1990/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9428.html
KW -
AB - A nonconforming finite element method of streamline diffusion type for solving the stationary and imcompressible Navier-Stokes equation is considered. Velocity field and pressure field are approximated by piecewise linear and piecewise constant functions, respectively. The existence of solutions of the discrete problem and the strong convergence of a subsequence of discrete solutions are established. Error estimates are presented for the uniqueness case.
X. G. Lube & L. Tobiska. (1970). A Nonconforming Finite Element Method of Streamline Diffusion Type for the Incompressible Navier-Stokes Equations.
Journal of Computational Mathematics. 8 (2).
147-158.
doi:
Copy to clipboard