- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On the Solution of a Class of Toeplitz Systems
- BibTex
- RIS
- TXT
@Article{JCM-7-334,
author = {},
title = {On the Solution of a Class of Toeplitz Systems},
journal = {Journal of Computational Mathematics},
year = {1989},
volume = {7},
number = {4},
pages = {334--342},
abstract = { The solution of certain Toeplits linear systems is considered in this paper. This kind of systems are encountered when we solve certain partial differential equations by finite difference techniques and approximate functions using higher order splines. The methods presented here are more efficient than the Cholesky decomposition method and are based on the circulant factorization of the symmetric "banded circulant" matrix, the Woodbury formula and the algebraic perturbation method. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9483.html}
}
TY - JOUR
T1 - On the Solution of a Class of Toeplitz Systems
JO - Journal of Computational Mathematics
VL - 4
SP - 334
EP - 342
PY - 1989
DA - 1989/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9483.html
KW -
AB - The solution of certain Toeplits linear systems is considered in this paper. This kind of systems are encountered when we solve certain partial differential equations by finite difference techniques and approximate functions using higher order splines. The methods presented here are more efficient than the Cholesky decomposition method and are based on the circulant factorization of the symmetric "banded circulant" matrix, the Woodbury formula and the algebraic perturbation method.
Ming-kui Chen. (1970). On the Solution of a Class of Toeplitz Systems.
Journal of Computational Mathematics. 7 (4).
334-342.
doi:
Copy to clipboard