- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Numerical Method of the Ramm Integral
- BibTex
- RIS
- TXT
@Article{JCM-7-361,
author = {},
title = {A Numerical Method of the Ramm Integral},
journal = {Journal of Computational Mathematics},
year = {1989},
volume = {7},
number = {4},
pages = {361--366},
abstract = { A numerical method for solving the ill-posed Ramm integral equation is presented in this paper. It is found that the method is stable and more accurate. Particularly, when the given data is contaminated by noise, satisfactory results are obtained by using the algorithm of this paper. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9485.html}
}
TY - JOUR
T1 - A Numerical Method of the Ramm Integral
JO - Journal of Computational Mathematics
VL - 4
SP - 361
EP - 366
PY - 1989
DA - 1989/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9485.html
KW -
AB - A numerical method for solving the ill-posed Ramm integral equation is presented in this paper. It is found that the method is stable and more accurate. Particularly, when the given data is contaminated by noise, satisfactory results are obtained by using the algorithm of this paper.
Long-ji Tang & Gan-quan Xie. (1970). A Numerical Method of the Ramm Integral.
Journal of Computational Mathematics. 7 (4).
361-366.
doi:
Copy to clipboard