- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Multigrid and MGR[nu] Methods for Diffusion Equations
- BibTex
- RIS
- TXT
@Article{JCM-3-373,
author = {Seymour V. Parter and David Kamowitz},
title = {Multigrid and MGR[nu] Methods for Diffusion Equations},
journal = {Journal of Computational Mathematics},
year = {1985},
volume = {3},
number = {4},
pages = {373--384},
abstract = { The MGR[v] algorithm of Ries, Trottenberg and Winter with v=0 and the algorith 2.1 of Braess are essentially the same multigrid algorithm for the discrete posion equation. In this report we consider the extension to the general diffusion equation. In particular, we indicate the proof of the basic result $\ru \leq 1/2(1+Kh)$, thus extending the results of Braess and Ries...,In addition to this theoretical result we present computational results which indicate that other constant coefficient estimates carry over this case. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9633.html}
}
TY - JOUR
T1 - Multigrid and MGR[nu] Methods for Diffusion Equations
AU - Seymour V. Parter & David Kamowitz
JO - Journal of Computational Mathematics
VL - 4
SP - 373
EP - 384
PY - 1985
DA - 1985/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9633.html
KW -
AB - The MGR[v] algorithm of Ries, Trottenberg and Winter with v=0 and the algorith 2.1 of Braess are essentially the same multigrid algorithm for the discrete posion equation. In this report we consider the extension to the general diffusion equation. In particular, we indicate the proof of the basic result $\ru \leq 1/2(1+Kh)$, thus extending the results of Braess and Ries...,In addition to this theoretical result we present computational results which indicate that other constant coefficient estimates carry over this case.
Seymour V. Parter & David Kamowitz. (1970). Multigrid and MGR[nu] Methods for Diffusion Equations.
Journal of Computational Mathematics. 3 (4).
373-384.
doi:
Copy to clipboard