- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Strong Predictor-Corrector Methods for Stochastic Pantograph Equations
- BibTex
- RIS
- TXT
@Article{JCM-34-1,
author = {Xiao , Feiyan and Wang , Peng },
title = {Strong Predictor-Corrector Methods for Stochastic Pantograph Equations},
journal = {Journal of Computational Mathematics},
year = {2016},
volume = {34},
number = {1},
pages = {1--11},
abstract = { The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order $\frac{1}{2}$. Linear MS-stability of stochastic pantograph equations and the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results.},
issn = {1991-7139},
doi = {https://doi.org/10.4208/jcm.1506-m2014-0110},
url = {http://global-sci.org/intro/article_detail/jcm/9779.html}
}
TY - JOUR
T1 - Strong Predictor-Corrector Methods for Stochastic Pantograph Equations
AU - Xiao , Feiyan
AU - Wang , Peng
JO - Journal of Computational Mathematics
VL - 1
SP - 1
EP - 11
PY - 2016
DA - 2016/02
SN - 34
DO - http://doi.org/10.4208/jcm.1506-m2014-0110
UR - https://global-sci.org/intro/article_detail/jcm/9779.html
KW - Stochastic pantograph equation
KW - Predictor-corrector method
KW - MS-convergence
KW - MS-stability
AB - The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order $\frac{1}{2}$. Linear MS-stability of stochastic pantograph equations and the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results.
Feiyan Xiao & Peng Wang. (2019). Strong Predictor-Corrector Methods for Stochastic Pantograph Equations.
Journal of Computational Mathematics. 34 (1).
1-11.
doi:10.4208/jcm.1506-m2014-0110
Copy to clipboard