- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
- BibTex
- RIS
- TXT
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multisymplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is calculated by the multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out, which verify the efficiency of the Fourier pseudospectral method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1502-m4400}, url = {http://global-sci.org/intro/article_detail/jcm/9849.html} }The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multisymplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is calculated by the multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out, which verify the efficiency of the Fourier pseudospectral method.