Volume 52, Issue 1
On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem

Jinfa Cheng

J. Math. Study, 52 (2019), pp. 38-52.

Published online: 2019-03

Export citation
  • Abstract

In this paper, a generalized multivariate fractional Taylor's and Cauchy's  mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}}  + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$

where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.

  • AMS Subject Headings

65M70, 65L60, 41A10, 60H35

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

jfcheng@xmu.edu.cn (Jinfa Cheng)

  • BibTex
  • RIS
  • TXT
@Article{JMS-52-38, author = {Cheng , Jinfa}, title = {On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem}, journal = {Journal of Mathematical Study}, year = {2019}, volume = {52}, number = {1}, pages = {38--52}, abstract = {

In this paper, a generalized multivariate fractional Taylor's and Cauchy's  mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}}  + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$

where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v52n1.19.04}, url = {http://global-sci.org/intro/article_detail/jms/13047.html} }
TY - JOUR T1 - On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem AU - Cheng , Jinfa JO - Journal of Mathematical Study VL - 1 SP - 38 EP - 52 PY - 2019 DA - 2019/03 SN - 52 DO - http://doi.org/10.4208/jms.v52n1.19.04 UR - https://global-sci.org/intro/article_detail/jms/13047.html KW - Sequential Caputo fractional derivative, generalized Taylor's mean value theorem, generalized Taylor's formula, generalized Cauchy' mean value theorem, generalized Cauchy's formula. AB -

In this paper, a generalized multivariate fractional Taylor's and Cauchy's  mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}}  + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$

where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.

Jinfa Cheng. (2019). On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem. Journal of Mathematical Study. 52 (1). 38-52. doi:10.4208/jms.v52n1.19.04
Copy to clipboard
The citation has been copied to your clipboard