- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this article transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, the considerable implications for practical solving approaches will be demonstrated, including the computation of strong upper and lower bounds.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1709-m2017-0002}, url = {http://global-sci.org/intro/article_detail/jcm/12271.html} }Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this article transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, the considerable implications for practical solving approaches will be demonstrated, including the computation of strong upper and lower bounds.