- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Family of Stiffly Stable Linear Multistep Methods for Stiff and Highly Oscillatory Ordinary Differential Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-1-12,
author = {},
title = {A Family of Stiffly Stable Linear Multistep Methods for Stiff and Highly Oscillatory Ordinary Differential Equations},
journal = {Journal of Computational Mathematics},
year = {1983},
volume = {1},
number = {1},
pages = {12--19},
abstract = {
This paper suggests a family of stiffly stable linear $k$-step methods with order $k$, for arbitrary $k$. Their stability regions are larger than those of the Gear method. Preliminary numerical test shows that these methods are efficient for stiff systems of ordinary differential equations with characteristic values near the imaginary axis.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9677.html} }
TY - JOUR
T1 - A Family of Stiffly Stable Linear Multistep Methods for Stiff and Highly Oscillatory Ordinary Differential Equations
JO - Journal of Computational Mathematics
VL - 1
SP - 12
EP - 19
PY - 1983
DA - 1983/01
SN - 1
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9677.html
KW -
AB -
This paper suggests a family of stiffly stable linear $k$-step methods with order $k$, for arbitrary $k$. Their stability regions are larger than those of the Gear method. Preliminary numerical test shows that these methods are efficient for stiff systems of ordinary differential equations with characteristic values near the imaginary axis.
Wang-Yao Li. (1970). A Family of Stiffly Stable Linear Multistep Methods for Stiff and Highly Oscillatory Ordinary Differential Equations.
Journal of Computational Mathematics. 1 (1).
12-19.
doi:
Copy to clipboard